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Large-distance quantum static correlations are investigated in a fluid of point charges interacting via Cou-
lomb forces in the presence of a uniform magnetic fiBld Moreover, each particle carries a spinorial
magnetic momentum which is coupled Bg. In the framework of quantum statistics, the present formalism
uses the Feynman-Kac-Iformula to represent the matrix elements of the quantum Gibbs factor. Particles
which are exchanged with one another under a cyclic permutation are equivalent to loops with random shapes;
the latter ones obey Maxwell-Boltzmann statistics and interact via some two-body potential which decays as
1/r at large distances. B, appears only in a phase factor which can be absorbed in some generalized fugacity
(which may take negative values in the case of fermio@sllective Debye screening effects show up through
exact systematic resummations of long-ranged Coulomb divergencies which are the same in the presence as in
the absence oB,. The averages of monopole-monopole and monopole-multipole interactions between sets
made by charges and their polarization clouds decay exponentgllipreaks the rotational symmetry and
effective quantum quadrupolar interactions emerge, as can also be seen in an exactly solvable model. As is also
the case for a charge of the medium, an external infinitesimal charge is completely screened by the total charge
of the induced polarization cloud. The latter decays a8 4% the particle-charge correlation. Subleading tails
are also investigated. The interplay with classical Debye screening is disc[$4683-651X98)02610-3

PACS numbegs): 05.30—d, 05.70.Ce, 71.45.Gm

I. INTRODUCTION nonexponential screening, which is contrary to common be-
lief, has been extensively discussed in Rgis5-7.

Matter at our scale can be essentially considered as a non- In the present series of papérsferred to as papers |, Il,
relativistic quantum system of electrons and nuclei interactand Ill in the following we give technical details of the
ing via the Coulomb potential: the interaction between twoderivation of results announced elsewhere. The exact coeffi-
point charge®, ande,, (wherea andy are species indicgs cients of the algebraic falloff's of the particle-particle,
separated by a distancés e, e vc(r) withvc(r)=1/r. The  particle-charge, and charge-charge correlations are derived in
standard many-body perturbation theory using Feynman dighe low-density limit first in the casB,=0 [8]. This calcu-
grams at finite temperature does not seem to be adequate figtion settles the existence of algebraic screening. Moreover,
tackling the problem of the large-distance behaviors of posiall previous results are revisited in the presence of a uniform
tion correlations[1]; in the special case of the one- magnetic fieldB, [9]. Paper | investigates how the general
component plasméDCP—a system made of one species of formalism of Ref[1] is modified by the presence 8, and
charges moving in a uniform electric background—one carthe new exponents of the algebraic tails of correlations are
only exhibit some diagrammatic corrections to the randonpgiven. Since the presence of the magnetic field only renor-
phase approximation which induce algebraic tails in themalizes a generalized fugacity in our formalism, low-density
charge-charge correlation of the quantum electron[@as expansions can be devised following the same scheme
Recently path integral formalisms properly adapted to dealhetherBy=0 or By#0. This is done in Paper Il for the
with the long range of the Coulomb potential have allowedexact low-density free energ¢The method is different from
one to achieve two main results by using methods from stathat of Ref.[4] and allows one to retrieve the same results in
tistical mechanics of classical fluids. First, the exact analytithe absence dBy.) In Paper Ill the low-density coefficients
cal expression for the free energy of these systems has beeh the algebraic decays of correlations are derived in the
derived in the low-density regime up to ordef? [3,4] presence as well as in the absenc®gf We also point out
(wherep is a generic notation for the densitiefn the latter  that, whenBy+# 0, the exact analytical coefficient of the lead-
references exchange effects were treated perturbatively. Seig algebraic tail for a one-component plasma can be in-
ond, a more general formalisfd], which takes quantum ferred from an exact sum rule specific to the OCP.
statistics systematically into account and where correlations In Paper | we argue that even in the presenc8gf at
can be studied directly in position space, has been used finite density, monopole-monopole and monople-multipole
exhibit the exponents of algebraic decays for position correinteractions between charges surrounded by their polariza-
lations between quantum charges at large distafgle§his  tion cloud are exponentially screened at the classical as well
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as at the quantum levebee Ref.[1]). When B,=0, the terms of cyclic permutations; the general formula for the
large-distance decays of correlations are controlled byressure is checked in the solvable case of a gas of indepen-
“squared” quantum fluctuations of some dipolarlike interac- dent charges submitted &y (Sec. Il A). For the quantum

tions[5], andp?)T(r)[g,—o~A.,/r® at large distances On  Gibbs factor in position space we introduce the Feynman-

the contrary, wherBy#0, the invariance under rotations is Kac-Ito formula, whereB, appears only in a phase factor
broken in one space direction so that quadrupole-quadrupolé&e€c. Il B). The quantum gas of point particles proves to be

interactions partially survive after statistical averaging andequivalent to a fluid of “loops” with random shapes that
P&zy)T(f)|Bo¢o~Day(F)/f5 when r goes to infinity ¢ obey_ cIaSS|ca_I dynamics and MaxweI_I-BoItzmann statistics
- : . . and interact via some two-body potential that behavesras 1/
=_r_/|r|). (In the absence of rotgnonal invariance, the harmo-at large distance&Sec. Il ©. Thus, generalized Mayer dia-
hicity of the Coulomb potent|al_cannot_ reduce the mea rams may be used. The exact resummation scheme required
value_ of _quadrupole-quadrupole interactions to short-range y Coulomb divergencies at large distances is summed up in
contributions) . . Sec. IV. The integrable resummed bonds are list8dc.

In the absence dB,, at any density, (tzr)'Te particle-charge IVA). Those corresponding to monopole-monopole and
and charge-charge correlations; e, pz) (1)[g,—0 and monopole-multipole loop interactions fall off exponentially
2 188,05 (1) ]p,=0, fall off asB, /r® andC/r'°, respec- over a length scale which tends to the classical Debye value
tively, because of the rotational invariance of the problemn regimes where exchange effects become negligible. The
combined with the harmonicity of the Coulomb potential andthird one, which describes quantum bound or diffusive
some interplay with the partially exponential screening cre-states, also involves multipole-multipole loop interactions
ated by other quantum chargésee Ref[5]). On the con- Which generate tails that decay at least as’.1A useful
trary, in the presence dB,, at finite density, the Fourier diagrammatic representation of the loop density is exhibited:
transforms of correlations involve nonanalytic terms whichit is equal to the loop fugacity times a function which arises
arise from the breaking of rotational invariance in one spacéom interactions and involves Mayer diagrams with weight
direction and which are not canceled by the harmonicity ofequal to the loop densit{Sec. IV B). This integral equation
the Coulomb potential or by its Debye screening; then thawill be useful in the derivation of low-density expansions in
interplay with partially exponential screening does not bringPaper Il. In Sec. V we present a solvable model in order to
any cascade of inverse power laws for the leading algebraigxhibit the mechanisms at stake in the presence of the mag-
tails at any density. Even when charges are summed over, dletic field. The model consists of two quantum charges em-
correlations decay asrf/ bedded in a classical plgsnﬁﬁec. V A. It is handled with

Algebraic screening at large distances is compatible witiise of the Feynamn-Kac-lformula. When thermal averages
integral constraints enforced by both internal and perfect exare taken for the classical plasn, disappears from the
ternal screening, which must also be satisfied in @fgssi- quantities relative to the classical particles in agreement with
cal or quantumregime. Internal screening refers to the factthe Bohr—van Leeuwen theore(8ec. VB. The symmetry
that the system, formed by a charge of the medium and itgroperties of the covariance of the motion of quantum par-
polarization cloud, carries neither any net charge nor any nédicles in the classical plasma at finite temperature in the pres-

dipole (see Sec. VB of Ref.10]), namely, ence ofB, are studiedSec. V Q. These properties imply
that there exists an effective quadrupolar interaction between
the two quantum charges. In Sec. VI the leading algebraic
f dr% €aSay(1)=0 (1) tails of static correlations at any density are investigated by
an analysis similar to that of R€]. In Sec. VI A auxiliary
and bonds are introduced in order to produce an equatida a
Dyson which involves convolutions of algebraic tails with
J' drr z €,S,,(1) =0. 2 functions _vvhich de_cay at least a_lsre.L/oy constr_uc_tion(be-
« cause their large-distance behaviors necessarily involve some
kinds of products of at least two resummed bgnd$e in-
In Eq. (2) S,,(r) is the structure factor,S,,(r)  termediate results in the discussion of R that are in-
Epa,sa’yg(r)ij(a?y)T(r), wheres(r) is the Dirac distribution ~ duced by the invariance under inversion are L_mchamSed. .
ands, , is the Kronecker symbol. Perfect external screeningV! B), whereas the analyticity of some contributions that is
means that the total charge induced in the plasma by afinforced by rotational invariance arguments disappears when

external distribution of charg@q(r) exactly compensates Bo is switched on(Sec. VIQ. The latter nonanalytic terms
the total charge/dr 8q(r) in its vicinity. In Fourier space, are canceled again when the rotational invariance is restored

the property reads by an integration of the correlation over the angle between

B, and the relative position of the two particles considered.

ind The study of the leading and subleading behaviors of dia-

27 &,py (k=0)=—3q(k=0). 3) grams is performed in Sec. VII. The algebraic tails before
integration over loop shapes have fixed parities urisepa-

The present paper is organized as follows. The system igate or simultaneogsnversion of loop shapes and their ex-

defined in Sec. II. In Sec. Il we sketch the derivation of theponents depend on these pariti&ec. VIIA). Decays of
general formalism in the presence B§. We recall that, in  various kinds of diagrams that fall off at least as®1éven

any representation of many-body states by tensorial productsefore loop-shape integration are discussed in Sec. VIIB.

of one-particle states, quantum statistics can be described Intermediate results are investigated in Appendix A. In Sec.
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VII C this study allows one to determine tails of convolu- mor energy of spin precessiofi,w, ,, respectively(with
tions introduced in Sec. VIA. This survey allows one t0 wc,=€,By/m,Cc andw| ,=g,wc,/2).
derive the leading and subleading algebraic tails of various In the presence of Coulomb interaction, the quantum sys-
correlations in Sec. VIII and to check that basic screeningem is stable only if quantum statistics is taken into account
rules are satisfied. In Sec. VIII A, we reorganize diagrams irand if all negative and/or positive charges are fermidris.
order to use the fact that the “Debye” effective monopole-The results about the stability of matter in a uniform mag-
monopole interaction satisfies both the internal and perfeatetic field are summarized in Rdfl2]. They deal with the
external screening. This allows one to exhibit all algebraicsystem made of moving electrons and nuclei lying at fixed
tails of p)7(r), =,e,p@)7(r), and =, e,e,p?)(r). Si- locations. If the electron spin-field interaction is not in-
multaneously, in Sec. VIIIB, we select the diagrams thatcluded, all proofs of the stability of matter hold with con-
contribute to the leading asymptotic behaviors which will bestants unchanged by the substitution @ by p
calculated at low density in Paper Ill. In Sec. VIIIC, we —(eai/c)A(ri), whereA is the potential vector. When the
show that the charge induced by either an internal charge @&pin is taken into account, the contribution from the Zeeman
an infinitesimal external charge is exactly opposite to it antenergy— =, u;- By, which is not bounded below for any ar-
that the density of the induced polarization cloud decays Witl’bitrary value 0f|BO|, is Compensated by the Se|f-energy of
the same inverse power law as the particle-charge correlatiofie magnetic field3, only if Za*2 and o* are sufficiently
for partiCles in the plasma. The diagrammatic structure of th%ma”[lS] Zeis the nuclear Charge and’ is the fine struc-
leading tail of the induced charge density is also given. Aptyre constant(Indeed,Za*2 must be small enough to avoid
pendixes B and C contain errata for RES]. the collapse of an atom, ang* must be small enough for
the repulsion between nuclei to prevent the collapse of a
macroscopic number of nuclgi.

The stability also requires that the local neutrality relation

In the present series of papers we consider a multicompo-
nent plasma made af; species with indexx. Each species
is characterized by its mass, , its spin#S,, its charges,,, 2 e,p,(r)=0 (5)
and its magnetic momentumm,=0,M5.Sy- MBa a
=e,hil2m,c is the Bohr magneton argl, is the Landeac-
tor. The squared spin?S? takes the value$?S,(S,+1),
while its component along the axis, #[S,],, is equal to
AM,, with M,=-S,,—-S,+1,...S,. The dynamical
variables of a particle with indek are its positionr;, with
conjugate momenturpi:(fi/i)Vri, and its spini S . (Vri
denotes the gradient with respect to the positipandi is
the purely imaginary complex numbgin the presence of a Ill. GENERAL LOOP FORMALISM
uniform magnetic fieldB,, we write the Hamiltonian of the
system in the nonrelativistic limit as

II. DEFINITION OF THE SYSTEM

might be realized in the bulk. Moreover, even in the presence
of By, an infinitesimal external charge must be perfectly
screened. In the OCP model, the response function does sat-
isfy the corresponding sum ru[See(5.64 in Ref.[10]].

In this section we recall the general formalism of Héf.
and we stress the changes that arise in the presence of a
) uniform magnetic field. This formalism is valid for any
1 €, guantum system with two-body interaction and quantum sta-
H{Na}(BO):z m( Pi— EBO/\ri> tistics.
' “i Let us consider the quantum grand partition function of

1 the system at the inverse temperat@ewhen a chemical
—Zi JaMBaS - Bot Z;j €a;€ac(Mi— 1)), potential ., is associated with each species
4)
E(BAnadBo= 3 Trle Mo 2w,
wherec is the light velocity,/\ denotes the outer product, {Nata=1,... n,
and v is defined in Sec. IH;y 1(Bo) has the following (6)

important property. It is the sum of two contributions: one
involves only position variables and the other one dependg Eq. (6) the numbeiN,, of particles of species runs from
only on spin variables. 0 to . The trace Tr is calculated over a basis of states that
The sum of the first two terms in Eq4) is the Pauli are symmetric(antisymmetri¢ under permutations of par-
Hamiltonian for an ideal gas. At thermal equilibrium CharaC'tic|es of each Specias according to the boson((fermionic)
terized by a set of densitiel$,},-1,... o, @nd the inverse nature of the species. Moreover, we assume that the ther-
temperatureB= 1/kgT, wherekg is the Boltzmann constant modynamic limit exists and we consider states in which each
andT is the temperature, the corresponding system is stablgarticle position may occupy an infinite three-dimensional
with Boltzmann statistics. Its thermodynamics involves thespace. The neutrality relatiofb) implies a degeneracy of
two dimensionless parametersq,=B8ug,Bo and ug, chemical potentialsu, [11]; in the thermodynamic limit
=(9./2)Bug,Bo. These parameters are equaldt2 times  physical quantities depend only ong—1 independent
the cyclotronic energy of orbital motiof,wc,, and the Lar-  chemical potentials.
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A. Quantum statistics and cyclic permutations number 1 among the particles involved in the cycle.

In any basis made of tensorial products of one-particld exp(Bu,)]P is the dimensionless fugacity associated with
states, the trace Tr, which is a sum over adequatelparticles. The loop denoted b§* is the set of degrees of
symmetrized/antisymmetrized many-particle states, appeafeeedom ,p,{Xy, ... X,}), where the positions are labeled
as a sum over permutatiomsand this sum can be reduced to according to the order of their transformation in the corre-
a sum over cyclic permutations. Indeed, evergan be writ-  sponding cyclic permutation, i.ea,(X;) =X+, with the
ten as a composition of permutations,, each of which convention x,,;=x;. With the notation [dL*---
involves only one species of particles, and everyr,, itself EE’;iligzlfH,p:ldx|- - -, the summation over cycles can
can be decomposed uniquely as a composition of cyclege written as a sum over loops, with
Thus a permutatiom determines a sequen{:ea,p}g;l """ s

.....

wheren, , is the number of cycles involving particles of D 1 J' H dr.. ..

speciesy in the cyclic decomposition of,. The total num- &1..ngn, %0 Ng p! i :

ber of particles of speciesx can be written asN, MNaphp_y, o P '

=Xp,pn,,,. The decomposition into cycles and the invari- = N

ance of the Hamiltonian under permutations of particles lead = — H dcy---. (8

to the expressiofA7) of Ref.[1] for E. The point is that in N=o N'J a=1

Eq. (A7) the summation may be performed over cycles from

the start and thé,’'s disappear. If the spin stateM , is kept as an extra internal degree of
The Hamiltonian(4) does not mix position and spin vari- freedom of the loop, thenc* is replaced by Z*

ables. Therefore, by using the representation of the trace ir (a,M,,p,{X1, . .. Xp}). The identity(8) is still valid with

the particular basig{r; Mi})=®;[|ri>®|M;)] (where®  n,,y in place ofn,,, while in Eq.(7) the sum over the
denotes a tensorial produicthe contributions from the posi- yajues M, of [S],, sinh(2S,+1]pus,)/sinhpus,), is re-
tion and spin parts of the Hamiltonian factorize, as in EQ.pjaced by a single term (ekgg,us,M,Bo])P. The latter rep-
(A8) of Ref. [1]. [We notice that in Eq(A8) allf_; is  resentation is the most adequate one for the following case.
missing in front of the spinorial density-matrix elemént.  we can check that the present formalism allows us to
Moreover, since the Zeeman term of the Hamiltonian is di-retrieve the pressure of an ideal gas with quantum statistics

agonal in the basi®;|M;), this factorization implies that the in a uniform magnetic field,. The grand partition function
only configurations of spin states that give nonvanishingof the latter system may be written as

contributions are those in which all particles of species

involved in the same cycle are in the same spin dtate 1 NN ~
Eventually, a notion of loop can be associated with each Bo= E WJ H dch H zo(L})
cyclic permutation of positions as follows. When the spin N=0 T n=1 n=1
configurations are summed over independently from the po- _ 5
sition configurationsz is given by Eq(3.1) of Ref.[1] with =exp{f dc* zo(ﬁ*)}, (9)
the following change: for each cycle withparticles of spe-
cies «, the spin degeneracy factoS2+ 1 is replaced by with [dZ* - '5225:12;“ . Eﬁzlfﬂf’zldxr .. and the
2 “fugacity”
2 (exqﬂgaMBaMaBO])p
a” " Sa p-1
" — a BgM
=sinh([2S,+ 1]pug,)/sinh(pus,). Zo( L) = (Pt GukipaBolld)P
The result is P L0
X X1|e” PMBy.a|x
. . T (xsle™ Mo.elx;)
~= — |
(qply_y 72 e ?O Nt X (Xple™ B 1) - (Xle P alxy).  (10)
o 7% * sinh([2S,+1]pus,) PP lop In Eq. (10) the chemical potentigl,, is shifted by the Zee-
p sinh(pug,) man energyg, ug.BoM,, Which removes the degeneracy
between the spin statesf , is the one-body Hamiltonian
xf I dri{rag}e PR Bo|{r}, (7)  of a particle without spin in the magnetic field,
i

0) _— _ 2
where [{r;})=®;|r;) and 7 is a particular composition of Mg.a= LA2Ma)[p~ (€,/2¢)Bo/AX]*.

permutationsr, corresponding to the sequenge, ,} andi . _ . .
ranges from 1 t& .= ,pNe p. 7,=(~ 1) is equal to 1 for After integration over the positions , the product of matrix

bosons and te-1 for fermions. It arises from the signature €'€ments in Eq(10) gives a factor Tr(exp- pﬁhg%)’a]). Let
of the permutationm, (which is equal top, to the power us choose the magnetic field along theaxis, Bo=Bge,,
N,—=“1n, ). The symmetry factor P/ comes from the Wheree, is a unit vector. The Landau energy levelshi ,
arbitrariness in the choice of the particle that is labeled withare
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) ﬁz[kﬁ 1 — w,_1) points towards the future and(w,_,) only de-
o ([KlziM)=— ——Fhocd N+ 5], (1) pends on the past. Its relation with the Feynman-Kac integral
“ reads
where[k], is the component df along thez axis andn is a 1 1
positive integer,n=0,1,2 ... . For[k], and n fixed, the LK A-dw=flnA-dw+ Ekifo dsV-A(w(s)),
ac to

degeneracy factor in a box with volumg is AY%(21)
times A?%e_By/2wfic [14] and (19
wheres is a dimensionless abscissasE —iAt).
> 8Ok, 1P If o is a closed pathfFKaCA-Qw is gauge invariant. In-
2 & [ Pfa T2 VTP, deed, in a gauge transformau%A#Vf, and UHU.
12 —oflat, whereU is the electromagnetic scalar potential,
J5dsU(S) + [exacA - deo is just translated byf(e(s=1))
—f(w(s=0)), as it should be. This transformation property
is ensured by the Tttemma for a functiorf (e(s),s),

[

1 ) e.Bo [ d[K];
_ -pBhg” ) =
lim—Tr(e By.) 5 hcf

A—

The summation ovep can be performed according to the
identity In(1—x)=—ZX,_,x"/p (In principle, the latter identity

is valid only when—1=<x<1, but it can be used for angby 1, (¢t

analytical continuation. Finally, we retrieve the pressure fAVf(w(S),S)'der EA“J’ dsAf(e(s),s)

PO of a gas of independent quantum charges in a uniform o 0

magnetic field 14], 1 9f(e(S),s)
+f ds———

1 0 s
O = fim —n= .
APT= lIm FTInZo(A{kalBoiA) —f(w(s=1),5=1)— f(w(s=0),5=0).  (16)
ng S, If By is uniform, one can choose the Coulomb gauge where

= > €aBo j d[k]zZ (—7,) V-A=0. Then, according to EQ.15), [ex.A-dew=
a=1m,==s, 2mhc) 2w 7=o [ 1A -dew, and the subscript Ttavill be omitted.
In the following, we choose the Coulomb gauge which is

BoM ,— = O([K],, . L .
XIn[1— 7,F ™ arpaBoMa= e ([Klz M, isotropic in the plane perpendicular B, namely, A(r)

(13) =(1/2)By/\r. In this gauge, the Feynman-Kac-lformula
reads
B. Feynman-Kac-Ito path integral ({rw(i)}|e‘ﬁ"'{na,p}|{ri}>
The representation of the quantum Gibbs factor in terms 1

of noncommuting operators is replaced in Ef). by a rep- = —e*(rw(i)*ri)zlm‘ii
resentation in terms of scalar functional integrals, by using i (277)\ii)3’2
the Feynman-Kac formula. In the Feynman-Kac path integral
the presence oB, only introduces an extra phase factor :
exf (ie,/hC) [exadA - dw] wheredw is a line element of the X H D(&) |ex Z ('e“i/ZﬁC)

pathw [15]. [rkaA - dw is defined as the limit of either the

discrete sum of termsu,— w,_1) - A([ @, + w,_1]/2) or the _fl o -

sum of (@,— @n_1)-[A(wy) +A(w,_1)]/2 when the dis- XBo: | @1,x)()/N e i

crete dimensionless “time” spacindt betweene, and

w,_1 goes to zero with the scaling law of a Brownian walk, x exp{ B e, e
i1#]%a; a;

[wn_wnfl]y,[wn_wnfl]v ~ 6M,V)\iAt' (14)

At—0

: 17)

1
X fo dsvc(@i i) (S)  — o )(S))
The Schrdinger equation may be derived by writing the
difference between the wave functions at timedt+At  w; ,)(S) is a Brownian path starting from at s=0 and
infinitesimally close together and by using the fact that theending atr ;) ats=1. It can be decomposed into a uniform
quantum Gibbs factor for one particle is the kernel of themotion along a straight line linking; to r ,;, plus a random
integral representation of the evolution of the wave functionfluctuation,
in imaginary time. The use of the discrete sums defined
above ensures that the latter Salinger equation coincides i, 7(i)(8)=(1=8) ri+sr i)+t N g &(S), (18)
\év;tlhl_itgra:]t”?éarﬁ?‘.ed from the usual quantization of the classi where)\ai is the thermal de Broglie wavelength defined as
In fact, from the mathematical point of view, thé fie- o= (B2, )% and &(s) is a dimensionless Brownian
gral [,1sA-dw must be used in order to properly define thebridge which vanishes whes=0 ands=1. The measure
integral [A-dew in functionals involving averages over D(£), which contains the exponential of the kinetic part of
Brownian pathg16,17. The Itointegral corresponds to the the Euclidean action, is normalizedD (&) =1, and has a
discrete sum of termsaf,— w,_1)-A(w,_1) Where (w, Gaussian covariance, which is independent from the species,
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! ! pl pJ ! ! !
Cov,. (s, ;Bo=0>zf D(OLESLES)], v(ai,z,»:Jo erO dr’ 8(r—P(1]—[7 —P()])

=9d,,,inf(s,s")[1—suns,s’)], Xvc(Qi(1)— Q). (23)
(19 The only difference with the cad® =0 is an extra phase
. , , o factor which has been incorporated in the fugae{tg). The
where |nf(,s,s )[sup(s,s’) ] denotes the infimurfsupremum phase factor involves [§Q(7)/\dQ=[jd7Q(7)
of sands’. /A[dQ(7)/d7], but the latter reduces tH§X(7)/\dX. In-
deed, when2 is changed int€2+a, [§Q(7)/\dQ is trans-
C. Equivalence with a Maxwell-Boltzman gas of classical loops lated by a/\fgdﬂ(r)za/\EfL L 41—%) +)\aféd§|(5)]

As a consequence of the two previous sections, and as #hich vanishes because,.;=x; and [3d&(s)=0, as a
the absence of the magnetic field, a particle that is not exconsequence of ltdemma (16) applied to the function
changed under any cyclic permutation is associated with &(«(S),S)=(s)-e wheree is a unit vector with any given
closed pathw, ;, whereasp particles that are involved in a orientation. With the same notations as in Réf,
given cyclic permutation are described pypen Brownian A o int
pathsy 41, With 1=1,...p. (@41 links X t0 X411 2(L) =1z} 1821080 X (DdX(g= BB (0 (24)
with the conventionx,,,;=x;.) These open paths form a ,
closed curve® which is parametrized by an abscisseang- ~ WhereE}', is an internal energy which does not depend on
ing from O top, Bo,

p
n<r>=|§16p<7>,|_1w|,|+1[r—<|—1>]. (20 ER(X)=

1 P

BZAizl

In Eq. (20) P(7) denotes the integral part of For instance, X (1= 0p() pr) 7= P(D]=[7" = P(7)])

Q(7=0)=w; (s=0)=X;, and we setQd(7=p)=w, (S Xvc(Q(7)—Q(7")) (25

=1)=x;. In the following, we calR=x, the “position” of

the loop andX(7)=Q(7)—R its “shape.” A loop £ is de- and

scribed by its position and its internal degrees of freedom

(a,p,X) (when the spin configurations are summed ovier . ng‘l sinh([2S,+ 1]pu5a)/ ePta
. . y4 = n

the following, p will bg called th_e exchgnge degeneracy of «p” p sinf(pus,) \(277)\2)3,2

the loop. We define the integration measuredl “«

= [dR[D(X) with

) 1.,¢(p P,
(X|+1_X|) +§ea dT d’T
0 0

P
) . (26

In Eq. (26) »°~* is a memory of quantum statistics and the

symmetry factorp comes from the arbitrary choice for the
P P loop positionR among thep particle positions involved in

D(X)Elﬂ dx |H D(&). (21)  the loop. The paramagnetic contribution S[#%,

-2 - +1]pus,)/sinh(pus,) reduces to the spin degeneracsg,2

+1 when the magnetic field vanishes, whf*a/ (27 2)3%?

[We notice thah , , which is involved in the definition X, s the usual dimensioned fugacity. We notice that the Gauss-
does not appear in the measi€X).] With these notations,  ian part arising fromelj',(X) in Eq. (24) together with the

according to Eqs(7) and (17), the grand partition function  phase factor generated by the coupling Wi could be
(6) of a system of quantum particles with quantum statistics,ysorped in the measuByX) so thatE™ (X) would reduce
and interacting via a two-body potential and with a uniform, e coulomb self-energy. Howevelrg,yixve do not choose this

external magnetic fiel, according to Eq(4) can be writ-  4ocomposition, because we want to keep an explicit track of
ten as the grand partition function of a system of classicae nositions of the various particles involved in a loop in

loops with Maxwell-BoltzmanrMB) statistics and interact- g ger tg study the correlations between the positions of quan-
ing via some two-body potential, as in B§.11) of Ref.[1], particles in the following.

The important properties af(£) are the following.z(£)

E=Eoop depends only on the shapé of the loop, and not on its
- N positionR, z(L£)=z, ,(X). It is unchanged under a gauge
S if T1 [z(c.)de ]6,5(1,2)2 €0 €0 0(L; L) transformation because the phase factor due to the presence

N=o N!'J a=1 n/=n = : of By involves [ A - dw calculated on a closed cunf&ee the
comment just before Eq16).] Moreover,z, ,(X) is invari-
(22) ant under the inversioX— — X and under the rotation of

aroundBy.
In Eq. (22) we use the convention that, =0, there is no The gas of loops obeys Maxwell-Boltzmann statistics so

L, in the corresponding term &, and the latter term is  that usual techniques from classical statistical mechanics of
merely equal to 1. The potential between loops can be exfluids can be applied. This was done by Ginibre in order to
pressed as prove the convergence of low-density expansions of thermo-
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dynamic functions for some integrable potentifl8]. The integration over some internal degrees of freedom of the
methods were different from those used in the following. Inloops. The formulas are the same as in E4s3), (4.6), and
the present paper, as in R¢l], we take advantage of the (4.7) of [1] and they will be recalled when they are used in
fact that the grand partition functiof22) is a functional of the following.
the loop fugacity in order to introduce Mayer diagrams. In-  As shown below, the Mayer graphs for the loop system
deed, since the loop density and the correlations between ttege very useful to investigate the large-distance behavior of
loops can be expressed as functional derivatives of the granmbrrelations between quantum particles directly in position
partition function, the rules for the Mayer diagrams are thespace or to devise systematic low-density expansions for
same as for point objects. In these diagrams there is at motermodynamic quantities or position correlations in terms of
one Mayer bond=exd —Bv]—1 between two points and a the densities of quantum particles.
point, which represents the variables of one loop, is associ-
ated with an integration measud&= [dr [D(X). By defi-
nition, the “internal” points are integrated over, while the V. SPECIAL CASE OF COULOMB INTERACTION
“root” points are not.

We will use a diagrammatic representation of the IoopM
density that was not introduced in R¢1], and that has not

In the case of the long-ranged Coulomb interaction, the

ayer graphs diverge and graphs must be collected in order
to get new graphs with integrable resummed bonds. In this
Section we only summarize the steps of the exact resumma-

to our knowledge. This representation, which may be intery,, process, because it is a straightforward generalization of
preted as an integral equation for the loop density, reads the procedure detailed in RélL] in the caseé8,=0. We first

1 N address the resummation scheme for the loop-density expan-
_ sion of the loop Ursell function, because the topological
p(La) z(ﬁa)exp| 12* Sex ,11;[1 [dcnp(ﬁn)][ﬂ f G*} principles are simpler than for the loop-fugacity expansion of

27 the loop density which will be discussed in Sec. IV B.
Equation(27) may be derived from the usual fugacity expan-
sion of the density where the density appears as the sum of
all unlabeled topologically different connected diagrams
with one root point £, and N internal points N The interaction between two loops may be decomposed
=1,... /). In EQ.(27) the sum runs over all diagranig, into the sum of three kinds of contributions: monopole-
which satisfy the previous definition with two additional monopole and multipole-monopole interactions, which are
constraints: they contain no articulation point and they reidentical to their electrostatic analogs, and a multipole-
main as a single piece when all bonds involving the rootmultipole interaction, which cannot be interpreted as an elec-
point are cut. The last property must be satisfied because thepstatic energy, because the Feynman-Kac formula involves
expansion of the exponential of the sum of such diagramenly interactions between loop line elements with the same
generates all diagrams and, in particular, all of those that dabscissdup to an integer Auxiliary Mayer bonds are intro-

not remain as a single piece when the root point is removediuced according to this decomposition, and the auxiliary dia-
Moreover, an articulation point is such that, if the bonds withgrams are collected inside equivalence classes in order to
which it is involved are cut, then the diagram is split into two Sum convolution chains of auxiliary bonds where the inter-
pieces and at least one of these pieces will no longer b&ediate points are so-called Coulomb points. The definition
linked to the root point. The absence of the articulation pointof a Coulomb point is the following: it appears in the auxil-
comes from the fact that each internal poiy of the dia- iary interaction bonds only through the monopole of the cor-
gram is weighted by the densipy £,,) and not by the fugac- responding loop, namely, through its total charge.

ity z(£,). Sg« is the symmetry factor of a given grapt, The presence of the magnetic field does not modify the
namely, the number of permutations of the internal poikjs resummation process, because the latter involves only the
that do not change the integrafd f ]+, which is the prod- large-distance behavior of the loop interactienBuc(|R;

uct of all Mayer bonds ir;*. Moreover, it is convenient to —R;|), which does not depend on the shape of the loops.
write the truncated two-loop distribution function The whole Sec. V of Ref1] is unchanged, except that the
pPT(La.Lp) as pPT(Ly Lo)=p(L)p(Lo)N(La,Ly),  Value of [D(X)p(X) now depends omB,. As a result, the
where the loop Ursell functioh(£,,£;,) can be simply ex- Ursell function can be expressed as a sum over Mayer dia-
pressed as gramsllI,

A. Exact resummation of Coulomb divergencies
for the loop Ursell function

1 M
0w b= & T1 arwrm) TTF|
r @9

In Eqg. (28) the sum runs over all unlabeled topologically

different connected diagramis with two root pointsC, and  Equation(29) is analogous to Eq.28) with the only differ-

L, andN internal points N=0, ... ») without any articu- ence that, in order to avoid double counting, there exist three

lation point. The contribution foN=0 reduces td (L, ,Ly). kinds of resummed bonds with a related excluded-
The quantum particle densities amebody distribution  convolution rule when the intermediate point is involved

functions are derived from the loop distribution functions byonly through its total chargéSee next paragraph.

1 N
SIS | [dcnpwn)][ﬂ f
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The resummed bonds®® and F¢™ corresponding to the pi P, )

monopole-monopole, i.e., charge-charge, and monopole- d’elec(ﬁirﬁj):fo deo d7’ ¢(Qi(7)—Q;(7")).

multipole, i.e., charge-multipole, interactions decay expo- 37)

nentially. More precisely
Fcc(ﬁi,/31')=—ﬁpieaipjea]—¢(|Ri_Rj|) (30)

while

pid T
I:mC(£i ,ﬁj): —ﬂpieaipjeaj fo E¢(|Qi(7)_Ri|)

—¢(|Ri—R;|)} (31
and, in a similar way,

deT
FeM(Li, L)) = ~ Bpi€qPj€y, J —j¢(|Ri_Qj(7)|)

o P
—o(IRi—Rj])|. (32
In these equations the potential is of Debye form,
p(R)= 2B 33

The expression ok is the same as in E¢5.14) of Ref.[1],

1/2

(39

K=

4mB2, &2, P’ f D(X)p,p(X)

When the distancR; — R;| between loops becomes infinite,
the leading asymptotic term W decays as IR, — R;|3. The
algebraic tails of the bonBg are generated by the expansion
of expW)—1. We notice thaF ;z depends on the density only
through the inverse lengtk.

B. Resummed diagrammatic representation of the loop density

Before using Eq(27), we must study the representation
of the loop densityp(£) in terms of diagrams with weight
z(£). Resummations are the same as in Appendix B of Ref.
[1]. Moreover, a generalization of Appendix C shows that
each resummed diagram is conditionally integrable, if the
integrations over the loop shapes and over the orientations of
the relative positions of loops are performed before the inte-
grations over the distances between loops. More precisely,
since articulation points exist in diagrams with weight£),

a point?; may be linked to only one poirR, in a resummed
diagram and the bond linking, to 7; may decay algebra-
ically. As in Egs.(C3) and(C4) of Ref.[1], once the invari-
ance of both the integration measure and the integrand under
the inversionX;— — X; has been taken into account, the only
terms at the border of integrability come from the c&ge
=L, (where L, is the root point These terms are propor-
tional to

1
f D(Xj)GZ(Xj)[Xj(T,)]iaMM<F), (38)

where the functionG,(X;) is invariant under rotations
around the direction oBy. In Eqg. (38) the summation over

In the quantum weak coupling regime for fermions at highthe repeated space index=1,2,3 is implicit andr
density, it tends to its value in the random phase approxima=€,(7) —R;. Because of the invariance & (X;)G(X;)
tion, whereas, in the classical limit where exchange effectsinder rotations in the plane perpendicularBg, Eqg. (38)
become negligible at low density, it coincides with the De-can be written as

bye inverse lengthky® with k=478 €2p,. The ex-

cluded convolution rule is the following: there can be no , , , 1

convolution F¢% F¢¢, FCCx FCm of F"“‘*Fgcm where* de- {A(T)A+[B(7') —A(r )]ﬁzz}(r ’ (39)
notes a convolution for the loop position varialiteand an

integration over the internal degrees of freedom of the interwith A(T’)=fD(Xj)Gz(Xj)[Xj(r’)])2( and B(7')

mediate loop. =fD(XJ-)Gz(XJ-)[XJ-(7-’)]§. However, after integration over
On the contrary, the dressed bond, which contains thene ynit vector =r/r,
multipole-multipole interactions and the short-ranged part of

the Mayer bond, decays algebraically at large distances. It - 1 1 (1 A7

reads f drizf v]=34| 7)== 3 o), (40)
Fr=e PeafePelecW—1 —FCC—FCM—FEMC (35 \whered(r) is the Dirac distribution. Finally, Eq38) is short

with ranged after integration over

Since the resummed diagrams in the loop-fugacity expan-
sion of p(L£) are finite, we can use the diagrammatic relation
(27) in which the weight of each loop is equal to the loop
density. This relation has not been studied in REf. Again,

, , , the Coulomb divergencies of the diagrai¥ can be re-
—[7"=P(r) D= Lvc(Qi(7) — Q;(7')) summed by a procedure analogous to that performed for the
(36)  Ursell function. The reason is that the diagrafis do not
contain any articulation point, except for the diagram with
and only one internal pointin which the root pointZ, is itself an

WL )= Bee, [ "dr [ a1
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articulation point. The special role of the single root point where the diagramB* contain the root point, and at least

introduces two differences with the case of the Ursell func-one

tion, as follows. Let us defin&*® (f™) asF°¢ (F™9 with

internal point. They are built with the bonds
Fe F°™ F™C and Fr and obey the same topological

vc in place of¢ in Egs.(30) and(32). First, there appears an properties as the diagrams® in Eq. (27) with the extra

extra constant

1
EJ dLp(L){[FCC+ FMC[FCC+ FMC]—[£°€12}(L,, L)
(41)

excluded-convolution rule also valid for the Ursell function.

V. A SOLVABLE MODEL

We consider two quantum chargesande, at pointsr,
andr, embedded in a classical plasma. This model was first

due to the resummation of ring diagrams with Coulomb in-introduced by Alastuey and Martifi9] in order to exhibit
termediate points, because these diagrams disappear in theW quantum fluctuations generate algebraic tails in position
resummation process, as ring diagrams in the loop-fugacitgorrelations at large distances. In this section we study the

expansion ofp(L,) [see Eq.(B8) in Ref. [1]]. The term

generalization of this model in the presence of a uniform

[f°]2(L,,L) must be subtracted because there is no ringnagnetic fieldB,.

with only one internal point(Indeed, two points are linked
by at most one bond.) Second, in the diagram with only

one internal pointC and a bond~g(£,,£), one must sub-

tract the contributions that are Coulomb rings in order to

avoid double counting, as in E(B3) of Ref.[1]. The redun-
dant contribution that must be subtracted is equal to

1
§J dLp(L{[FC+FM P2 =[f12}(La,L). (42

The spurious infinite contribution ¢ff¢¢]? disappears in the
difference between Eq$41) and (42). If we denotea the
species of the root poinf, with exchange degeneraqy
and y the species of the internal poimt, the difference
between Eqs41) and(42), which will be denoted 4y (since

it comes from some truncated contribution of Coulomb

rings), may be written as

dr <
>

Pa g=0

1-e "\ (rPadr & 1 ,
=S e R R A

r 0o Pa q’'=00

2 Pa 1
=g Beapa? [ o [ PS03 S0 1

X

e Kr)
r ’
(43)

where the factor? given by Eq.(34) originates from the
integration over the internal degrees of freedomZofThe

A. Definition of the model

In order to define the correlation between the two quan-
tum particles from the free energies associated with their
immersion in the classical gas either separately or together,
we decompose the Hamiltonian of the whole system as
H=Hy(C)+H(1,C)+H(2,C)+e,evc(ri—ry) with the
following definitions. Ho(C) is the Hamiltonian of the
classical plasma in a phase-space configurati@n
={Yj}j=1,... n:1Pj}j=1,... n) Of its N particles in the ab-
sence of the quantum charges,

N
—(e/2c)By/\y: ]2 1
Ho(C) =S, LRI (672087 +§fdrfdr’
=1

2mj

Xvc(r=r")Q(r,C)Q(r’,C), (45
whereQ(r,C) is the microscopic charge density rabf the
classical gas in the configuratia®. H(i,C) is the Hamil-
tonian of one quantum charge with index 1,2 in the po-
tential created by the classical plasma in configura@ion

[pi—(ei/2c)By/\ri]?

H(i,C)= 5

+eij droc(ri—r)Q(r,C).
(46)

In a rigorous approach, one must first consider a system in a
finite volume A and then take the thermodynamic limit. In

resummed diagrams with at least two internal points are obthe following we consider a system in an infinite volume
tained by the same resummation process as in the case of tfrem the beginning, because this does not change the results.

Ursell function.[We notice that the resummation for the

loop-fugacity expansion gb(L,) performed in Appendix B

As in Ref.[19], the correlation is defined from the immer-
sion free energies as

of Ref.[1] is more complex because the existence of articu-
lation points in the loop-fugacity diagrams leads to the intro- g(r,,r,)=exp{— [;[|:<122)(rl o) — |:<11>(r1) - F(zl)(rz)]}_ 1,

duction of two types of weights after resummations as well

(47)

as related excluded-convolution rules in order to avoid

double countind. The final formula forp(L£,) after resum-
mation reads

p(La)=2z(Lyexdl rgT(»Ca)]

Il

1 M
X ex I1 dPue(P)
P* * m=1 P*

(44)

WhereFi(l)(ri) is the free energy associated with the immer-
sion of one quantum charge with speciest pointr; in the
classical gas

J dC<ri|e_B[HO(C)+H(ixC)]|ri>

e AR = (48)

| ace sroe
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andF(fz)(rl,rz) is the free energy associated with the immer-integrated over first, there appears a phase factor which

sion of the pair of quantum particles at positiansandr,, couples the paths of the variablevith B,. For a closed path
w; =Tt \;&s), the phase factor involve$,;w; ;/\de; ;

4c —BH(C) =\ f“og/\dg,, becausd ;;d£=0 according to ltolemma
Bty (riroe [F1.r2) (16) Then the generalization of E¢L7) in the presence of
e Frzlld= . (49 an external potential allows one to write
| ace sroe

o 1
(rije=FHt ’C)|ri>=(ZTi2)3’2J D(&)

In Egs.(48) and(49) the configurations of classical particles

are integrated over witdlC=II}_,dy;dp;/(27%)N. We

notice that in facHy(C) is a scalar which factorized out of X exp i (e\2/2%c)By- j &/NdE

the matrix elements. In fact, since the position integrals are o 6

performed over an infinite volumds{*)(r;) is independent .

fromr;, FOr)=F®, while F{¥(r,,r,) only depends on Xe_ﬂeiE f dso (i + N & (9)-Y))
i=1Jo ’

the differencer,—r;. (51

As in the general formalism, the closed path; may be
interpreted as a closed curve with a uniform charge density

In the averaging process, the mechanism underlying th&ini(r) =& [5dsd(ri+Xi&(s)—r).
Bohr—van Leeuwen theorem still operates and there is no In the case of the one-body quantum Gibbs factor that
macroscopic magnetic property associated with the classppears in Eqi48), the use of the Feynman-Kac-ttermula
calparticles. Indeed, the conjugate momenfynof a classi- (51) introduces the electrostatic interaction of the closed
cal particle is a scalar and, by a translatigp— p; curve wj with a given conﬂggraﬂon of the cla§5|cal par-
+(ej/2c)By/\r;, the coupling withB, disappears for the ticles. Henceforth, after averaging over the classical gas con-

B. Averaging over the classical gas

degrees of freedom of classical particles, as follows: figurations, there appears the electrostatic free energy
N F{%ec(&) of the immersion of a single closed curve in the
classical gas,
f dCe AHolO= [ ——— f I1 dr,
i1 (2m\3) j

(1) 1
e Phi mf D(&)

XeXF{_(B/Z)]‘Z;H eje|vc(rj—r|)}. (50)

e_BFi(,le?Iec{gi),

1
o xex;{(ieixflzhc)so-f £(s)\dé
On the contrary, the position and momentum operators do 0
not commute for quantum particles. This property is reflected (52)
in the path integral representation in the phase spag® (
[20] by the fact that, when the paths of the variaplare  with

f[]:[ dy; |ex

F{_Bei; € dmi(r)vc(r—yj)_(,5'/2)]29&I ejeIUC(yj_yl)}
J [T

Fi(,le)|ec(§i) is independent from the positian of the closed curve because the classical gas occupies an infinite volume.

On the contrary, in the case of the two-body quantum Gibbs factor involved itdBx the pair interaction that appears in
the Feynman-Kac-Ttéormula (17), namely,elezfédslfédszvc(rz—r1+ N2&,(S,) —N1£4(S1)), is not an electrostatic energy.
However, it can be written as the sum of the purely electrostatic contribBtigg(r,1—r»,%:,%,), which couples every curve
element of one closed curve with all curve elements of the other closed curve, and a purely quantum term,

e BF | decdé) =

(53

exr{ _(3/2)1; ejevc(y; _Y|)}

1 1
W(rl_rzyfl,fz)zelezfo d%fo dsy[ (s1—5) —1]vc(ro—ri+A2Ex(S2) —N1&1(S1)) (54

(w corresponds to the quantity denoted\Win Ref.[19]). With this decomposition, the pair free energy reads

e BFR (11— ! fD(gl)ex (ieﬁxi/Zﬁc)Bo-flgl(s)/\dgl
(2m\)¥A2mA5)%2 0

1
Xf D(§2)exp{(ie2)\§/2hc)80-f &(s)/\d&, e*BW(rrfz,§1yfz)efBF(lzz),euec{frfzv§1v§z>, (55)
0
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where F(lzz),e|ec(f1—fz,§1,§z) is the free energy associated with the immersion of two closed curves interacting through the
electrostatic force. As in Ref19], we introduce the effective potential corresponding to the electrostatic energy needed to
separate the charged filaments aandr, by an infinite distance in the classical gas,

Deit(r1—r2,61,.6)= F(lzz),elec(rl_ r,61,6)— F(l%glec( &)— F(Z%glecg &). (56)

Subsequently, witli=r,—r,, the correlation(47) can be written as

g(r):f DBO(§1)J DBO(fz){e_'B[%“JrW]_l}i (57)
with

e BF | dec &)

exp[(ieiyxflzfu:)Bo-folgi(s,)/\dgi

Dg, (&)= e D(&). (58)

fD(fi)ex;{(iei)\iz/Zﬁc)Bo-folfi(s)/\dfi

The large-distance behavior gf(r) can be easily investi- This covariance depends on the speci¢f the particlei
gated from Eq.(57). Every Brownian bridge\;& has a through the phase factor and the electrostatic free energy in
Gaussian weight that restricts its average extent to distancés. (58). With this notation, the leading algebraic tail in Eq.
of order\;. Besides, by virtue of the exponential screening(60) is

in classical Coulomb systenj21], ¢.; decays faster than

. : 1 1 1
any inverse power law of the distancewhereasw falls off N ~ — - Bee )\2)\2f ds J' ds, [8(s—s.)—1
algebraically. More precisely, according to the Taylor for- o )Hw gPereaNN; o ‘Jo S2Lo(s:7s2)~ 1]
mula
N . 1
velra=ri+Aa&(s2) —N1éi(s1)] XCovui(sl’Sl)covpé(SZ’SZ)auvmr(F)' (62
=> (INDH{IN26(S0) — N1 &1(s1)]- VIN(1ir), C. Covariance properties
n=0
In order to give a more explicit expression for the
and according to the property asymptotic behavior ofi(r), we briefly present the proper-
L L ties of the covariance that are deduced from those of the
f dslf ds,[ 8(s;—s,)—1]f(s;) =0, (590 measurdg (&) defined in Eq(58). The termB,- [ §/\d&in
0 0

the phase factor involves only the componentg tifat lie in

the leading algebraic tail ofs decays as tf, andw? falls the plane perpendicular By.

off as 16 First, the phase factor is invariant under rotations

Subsequently, algebraic tails appear in the Iarge-distanctnlélIs plane. Therefore
behavior ofg(r) and are given by ﬁ/)‘(’;(s,s’)=ﬁ/‘y’;(s,s’), 63)
f Dg,(&1) f DBO<§2>[ —BW(r.£.£) coVLi(s,s') = —CovSi(s.S). (64)

2

B , Since by definitiorﬁ/fiy(s,s) =H/;'j((s,s), Eq.(64) implies
o lw(ré,8)]° -

: (60 that

After averaging{---} in Eq. (60) with the measurdg (£), COV,y(5,5)=0. (65

which is invariant under the inversicdh— — & , the slowest Second, the phase factor is unchanged whp— —[ £],,
nonvanishing term in Eq60) is the term in the Taylor de- and

composition ofw that contains twc;’s and two&,'s. This

term decays as fi7, whereas, in the absence Bf,, the covyi(s,s’)=cov,(s,s')=0, (66)
invariance under rotations makes this term proportional to e e
A(1/r), which is short-rangedsee Ref[5]). We define the covf;/(s,s’):cov;'iz(s,s’)=0. (67)

covariance in the presence of the classical gas as ]
As a result of Eq(65) and of the latter equations

covziy(s,S’)Ef De,(§)[&(9)]ul&i(s)],. (6D covii(5,8)=4,,,60v (s,S). (68)
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In order to rewrite Eq(62) with two operators analogous @7
to{---} in Eq. (39), we use Eq(68) and(63). Since paaab|nonexcl(r):p2 pE papbf D(Xa)p(xa)
a b
M (1 P V)
(—) ~ (i PO (69 % [ DO ), (7
((92)” r rn-%—l

_ ) ) wherey is a global notation for the internal degrees of free-
whereP,, is the Legendre polynomial of orderand ¢ is the  dom of a loop,y=(«,p,X), andp(x)=p,, o(X). The large-

angle betweem andB,, we find thatg(r) decays as distance behavior qﬁfi’gblnonexchis analyzed by a reorgani-
P 9 1 L zation of diagrams in order to exhibit the properties arising
g(r) ~ —6$39192>\§K§J dle’ ds, from the structure ofV.
r—oo r 0 0 As in Sec. |B of Ref[5], we introduce other diagrams
— — calledl, by splitting the resummed bork€k into two bonds
X[8(s1—5,) — 1][COV,4(S1,S1) — €OV, (S1,S1)] W andFpgg,
X[COVyZ(Sy,S,) — COV,A(S,S,) . (70) Fr=W+Frg. (72)

In conclusion, this model is solvable, and the exact algebraidhe point of the decompositiofi72) is thé’ﬂ the leading
tail of the correlation is given by Eq(70). Since asymptotic behavior of g falls off as 1f® at large dis-
fd(cos)P,(cosH)=0, after integration oved, g(r) decays tances; The representation lofr, x5, x,) in terms of dia-
as }fG, according to Eq(60), as in the absence &. Inthe  gramslI is the same as that given in EQ9) and diagrams
limit of weak Coulomb coupling and weak dynamical effectsH have the same properties as diagrdins_et H denote the

(at ucj= BheBy/2m;c fixed), the coefficient of the 17 tail ~ ) i
can be calculated exactly. The result will be given in PapefUm ©f the so-calledl,, diagrams that remain connected

Il when a bondw is cut. According to some kind of Dyson
equation(which also appears in the definition of the “di-
rect” correlation function h(r, x.,xp) iS equal to a series of
convolutions involvingH and W. If we denote g(k)
=[drexdik-r]g(r), the series reads in Fourier space

VI. LEADING ALGEBRAIC TAILS OF THE STATIC
CORRELATIONS AT ANY DENSITY

The scheme of the discussion is the same as in [B&f.
but now the arguments about invariance under rotations mugt Xa) (K, xa  xo)p(xv)
be decomposed in arguments about either invariance under o
inversion or invariance under rotations in the plane perpen- =H(k / /
) -1 T =H(K,Xa xp)+ 2, | dx1---dx,dxi---dx
dicular toB,. The results derived in Reff5] and that depend bl ey ! e :
only on the invariance under inversion are still valid. How-

ever, the invariance under rotations is brokenBgyand the XK (K, Xa X1) X WK X1, x)K(K X1, x2) -

discussion about analytical properties in Fourier space is < W(k VK (K. v 73

modified. (ko x X KK, X1 xb), (73
where

A. Scheme of the discussion

. . . K(Ri—=Rj xi x))=0(Ri—Rj) 8, ,.p(xi)
We consider two charges with species and a;,. The boAnAl I
two-body distribution functior(called correlation in the fol- +HR =R}, Xi X))
lowing) can be decomposed into two contributions according
to the general formalism of Re]. If a,= «,, the so-called  with Oy, = S, - Op, ?; o(Xj—X;). The representation df
exchange parbfa)JJexch comes from configurations where in terms of the graptH and a sum of chains made with

the positions of the particles are involved in the same cycli@raphsK linked by | bondsW can be written with short
permutation. It is determined by integration of the loop den-notations as

sity over all its internal degrees of freedom except for the

relative distance between two particles in the I¢epe Eq. php=H+KxWx K+ K« W KxWxK+-... (74

(4.6) of Ref.[1]]. The exchange contribution decays faster

than any inverse power law of the distance, because th his decomr%ofsnon IS Iusgfull becadﬁeandssubsltlal(kje?tg, f
phase factor originating from the magnetic field does no ecays as 17 for topological reasonésee Sec. of Ret.

modify the argument in Se& D of Ref.[1]. The other part 5].)' even before integration over the _shapes of the root
)T points £, and £,. Moreover, the dimensional analysis and

P “a“b|“°”eX°h0f the correlation is calculated by integration of the invariance under inversion show that the convolutions in
the loop correlation over the internal degrees of freedom Oqu. (73) fall off at least as ¥P. In fact, whenB,=0, be-

the loops(see Eq.(4.7) of Ref. [1]). In the thermodynamic = .4,se of the invariance under rotation, there appear powers
limit the loop density does not depend on the position of they the | aplacian and contributions that would decay a8 1/
loop andp ?); |nonexenCan be written in terms of the Ursell according to the sole dimensional analysis are in fact short
function as ranged because of the harmonicity of the Coulomb potential.
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The general mechanism was discussed in Sec. | B of[REf. The relation(73) may be written as a series of chains, each
and it is exemplified in the solvable model of Sec. V whereof which involvesl termsw™ "l After integration over the
the leading asymptotic behavior is in fact given Byw?>  shapes of the root point§, and £,,, these chains are de-
=W? according to Eq(60). WhenB,#0, there is no invari- noted byC,(k;{m;},{n;}) as in Sec. llI B of Ref[5].
ance under rotation and convolutions indeed decay fa 1/ In order to simply discuss symmetry arguments, we also
as in the solvable model where the correlation is given bYIntroduceIC[”'+T'+1],
— Bw=W. '

The following discussion is organized in two steps. First,
we give the slowest possible decay of the convolutions in Eq.
(73) that is derived from dimensional analysis and invariance
under inversion. Since the term “rotational invariance” used
in Sec. Il B of Ref.[5] is too restrictive and can be replaced
by “invariance under inversion,” the result about the mini-
mal inverse power law is the same in the presence or in thgq
absence of the magnetic field. However, the exponent of the

”uvm|+1]
||+1

(k)—f D(Xi,)f D(Xi+)[k- X ({)]"

X[k Xip1(7i40) 1™+ 2K (K, X o Xi41)
(77)

slowest decay is altered by the existenceBgf because it

depends crucially on rotational invariance arguments. Th|s/C

point will be discussed in the second step.

B. Dimensional analysis and invariance under inversion

The large-distance behavior of the convolutions in Eq.

(k)zf D(xa>f D(X0)[k-Xa(71)T™K (K, X x1).
78

with a similar expression folC n'](k) According to these
definitions, up to multiplicative factors,

(73) is derived from a Fourier transform analysis according

to the principles presented in Sec. Il C of Ri]. In short,
the algebraic tails of a functiog at large distances are ex-

[m4]
K 2|"C“1

Ci(ki{mi} {ni})= (k)™ (k)

actly given by the inverse Fourier transforms of the terms in

the smallk expansion ofg(k) that are nonanalytic in the

“l 1m]

I 1) (k)K:

X K52 ™ (k) - (k).

components ok. Subsequently, the leading large-distance

decay of a convolutiorg,;*g, is easily determined: it is
merely given by the nonanalytic terms in the sniakxpan-
sion of the product of the smaki-expansions ofj; andg,
that are of the lowest order ink|. For instance, the

asymptotic behavior of the inverse Fourier transform of the

product g,(k)g»,(k) is given by that of the two singular
termsgl(k=O)Sg2(k) and gz(k=0)Sgl(k), which is of the
lowest order and does not vanish.S(_jl(k) is of order zero
in [k[, an extra singular tern$y (k) Sy (k) appears. IfS;,
and S, are of the same order ifk|, then the asymptotic
behavior is given by the sum of the terms invoIviBgl(k)
or/and ng(k) .

In order to distinguish the variouseading and sublead-
ing) algebraic tails, we introduce the following decomposi-
tion of W derived from Eq.(36):

, Pi p.’ ,
W(K, xi ,Xi)z_ﬁeaieai’fo dri O'dTi{5([Ti_P(Ti)]

—[7 =P()]- 1}2 2

ni][kixi(Ti)ixi,(Ti’)]!

m'nI

X wlm (75

wherew!™ "l is a singular term of ordgk|™*"~2,

wim I X (), X7 () T=[X () - K™

k]ni477

X[=iX{( h

Ti,).

(76)

(79

SinceH decays as tf, even before integration over the loop
shapes the first nonanalytic term in the snkaéixpansion of
H(K,x/ ,xi.1) is of order|k|® and will be calledS)(k). As

a result,

HK, x| Xi+1) ~
‘k‘ﬂo

fdrH(r,Xi’ Xi+1)

+if dr(k-r)H(r,x{ ,xi+1)

1
_EJ dr(k-r)2H(r,x! xi+1)

+SP(K,x{ xi1) FORL(K) +O(K|Y),
(80)

where O{".(k) denotes an analytic term of ordek|",
whereagO(|k|") is just a term of ordejk|". We notice, that,
as explained in Ref5], no Ink| term appears because of the
structures oV and of the algebraic tails that it induces. The
first three terms in the smald-expansion ofCI '+T'*1](k) are
analytic and they may vanish according to arguments of in-

variance under inversion, even whd&y+0. Indeed, the
property
K(=K, = X{ , =X+ 1) =K(k,X{ ,Xi+1) (81
implies that
KT (0 =0 "™ (k) + O([K|m Am)+2), (82
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where 6(m)=0 if m is even andg(m)=1 if m is odd.

Og:;f %M))(k) comes either from the first or the second term

in the smallk expansion oK. The structure of the smakl-
expansion OKET(k) is similar, while as soon a®=2. (6 is the angle betweeB, andk.) Thus
a 1t° falloff, with an angular dependence, may appear.

The integration over the orientation kfrestores the ana-

lyticity of the first term in the expansion @f(k;{m},{n;}).
+O(|k|ni+mi+1+ﬁ(ni+mi+1)+2)' (83) l\)/lloreﬁver' p I( { '}{ |})

(k%xk%“”fQQkErkﬂkaowQZQ (85)

K[n' imi+1](k) — O(ni+mi+1+0(ni+mi+1))(k)

ii+1 anal

By inspection, it can be checked that+m; . ,+ 6(n; . Cier . . A
+m;,1)+2<n;+m,;+3. Henceforth, the second term in f dr f(r)=f dke jdkf(|k|,k~Bo), (86)
the right-hand side of Eq83) may arise from the nonana-
lytic term S{7”. Its study requires a more detailed analysis ofwheref=r/|r| andk=k/|k|. Thus, after integration over the
the structure of the algebraic tails, which will be done in SeCOrientation ofr, the convolutions decay in fact ag 1/
Vil _ _ _ As a conclusion, in the absence 8, the particle-
Finally, according to Eqs(82) and (83), the first term in particle correlation decays asr/and this tail comes from
the Fourier transform of a convolutigi9) with | bondsWis  H, whereas, in the presence Bf, the particle-particle cor-
of order|k|°q with relation falls off as 1° and this tail originates from the
convolutions(while the 1f8 subleading tail arises froM).
D¢, =—21+my+6(my) +ny+6(n)) After integration over angles, ther®/tail disappears and the
-1 leading order is given by the rf¥ tail coming fromH.
+ 2 [M+m gt oni+mey)].  (84)
i=1 VII. STRUCTURE OF LEADING AND SUBLEADING

ALGEBRAIC TAILS OF DIAGRAMS
Moreover, the next term in the smddlexpansion of Eq(79)

is of order|k|Pc "2, When them;’s andn;’s vary, D, takes The leading and subleading tails of tﬁﬁ,c diagrams are
only even values, and its lowest value is equal to 2. Subseanalyzed first in order to derive the asymptotic behaviors of

quently, the dimensional analysis and the invariance undehe convolutionsC. The result will be used extensively in
inversion ensure that a convolutiGpndecays at least asr®/ Sec. VIII. As in Ref.[5], we will denote{=(«,p,Z) and

and the first subleading tail falls off at least as’1/ {'=(a’',p',Z2") the internal degrees of freedom of loops.
This notation will avoid confusion of these points with the
C. Full or partial rotational invariance intermediate points of convolutiorts

The preceding section dealt with the part of Sec. 11l B that
is not changed, and now we turn to the part relative to ana-
lytical properties which is modified by the presence of the As discussed in Sec. llID of Ref5], any leading or
magnetic field. According to the dimensional analysis, a consypleading algebraic tail of a diagraﬁ(ra_rvaava)
volution may decay as 7 if D, takes its minimal value comes from the leading or subleading behaviot @lemen-
De, mn=2, Namely, ifm;=1,2, n;=1,2, andnj=mi,;=1  tary algebraic tails % 1(r ¢, ,¢/) with =1, ... L. By
foralli=1,... ). Such a convolution does fall off asr ¥/if definition an elementary algebraic tail is either the
the first term in its Fourier transforng,(k;{m;},{n;}) is  asymptotic behavior of a single bohtl or Fg¢ or of a con-

nonanalytic. o volution of diagramd1 and algebraic bonds. For a convolu-
_ In the absence 0By, the system is invariant under rota- {jon ¢, =1 and the convolution contains at least one bond
tions around any axis, and the first analytic term in &%) W. E T d L—1 ds t luti

or in Eq. (83 is exactly proportional tok? for the - Forally, diagram,L =1 corresponds to a convolution

{m;,ni}i=1,.. ., that giveD¢ min- As a consequence, in the without any bondW, whereas, wheh =2, the Sl alg
latter cases, the first term in the convolutitt®) is exactly ~may be convolutions involvingV bonds. These elementary
proportional to|k|2 and is analytical. Subsequently, accord- algebraic tails are denoted I8/”[%%'1(r £, ¢') because they

ing to Sec. VIB, any convolutiog,(r;{m;},{n;}) decays at decay as ¥/ and satisfy two properties. Propei() reads
least as 1/'.

A. Definitions

In the presence dB,, the system is invariant under rota- y=P(q.9")+q+q’, with inf(q,q")=P(q.q").
tions around the axis and the first-order term ig."' "7 (k) (87)
' ibuti 2N~ a)[ K129 i . , .
is a sum of contributions of the fork|2Mi~9W[k]Z% with (B) corresponds to two symmetried) S 1(r .7} is
Ni=n;+m,;+6(n+m,) andg;=0, ... N;. Inthe con- invariant under global inversion of its arguments,
volutions C; for which D¢ =D, . every K starts at the
order|k|? by a sum of two terms which are proportional to sl —r —z —z"y=sadlr 7z 7'y (89

k? and[k]§ respectively. Thus, after expanding the product , ,
of the smallk expansions of th&(’s, the first term in Eq. (2) S@9(r,£,¢") is of parity (—1)9 [(—1)% ] under the
(79) contains nonanalytic contributions inversionZ——2Z [Z'——Z2'], namely,
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slaa’ly —z z"y=(—1)9sMadl(r,7 7). (89

Sea'l(y £, ¢ is denoted by )(r,Z, Z") when only
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decays as t?7""a*™ pefore integration over the loop
shapesX, and X,,. SinceT is of parity (—1)%**1% under

Xa——X, and (—1)+38 under X,— — Xy, the invari-

the shapes of the loops are important for the discussion. Wance of

notice that the present definition 8f(49'1(r, £, ") is more
general than that used in Sec. IlID of RER]. The latter
definition was restricted to convolutions with algebraic

bonds at both ends in order to preserve a tensorial structure,

because, instead of propertg), we used the following
property B8*):

staalr ¢ ¢
— aldl [a’] =&
A,u,l ..... ,uq(Z)Avl ..... v ;(Z )S,ul ..... 'U’qu ..... Vqr(r)
o] [a'] '
whereA," Mq(Z) andA, " Vq,(Z ) are tensors of rank

gandq’, respectively, and” /(1) decays as

1/r?. In the present paper, we consider more general struc-

tures SMIAA'l(r 7 7'} so that propertyB) is weaker than
property B*). The advantage is that propert®) is valid in
the presence as in the absence of magnetic field and it
sufficient for deriving the properties which are in common
for both cases.

An argument similar to that given in Sec. 1l D of R¢g]

shows that, before integration over loop shapes, the leading

and subleading tail¥ of a diagrarrﬁ have a structure which
satisfies property &), with yr=3_,[P(q,q/)+0+q;]
+Qa+Qp, and property B),

T(ra=rp,XasXn)

=SrDIQa ™21 Qo2 arl(r —r v vyp),

(90

wherel runs from 1 toL, andQ, (Q) is the number of
derivatives with respect to, (r,) which are performed to
obtain the subleading teri.

Since some tails arising from convolutions involviig
bonds area priori algebraic and prove to be short ranged

after integration over loop shapes, we deal with convolutions

nim;l,

C separately. According to the definition of tl’ﬁ{"i+l s, the

convolutionsC involve the algebraic tails of the inverse Fou-
rier transforms of functions

f D(Xa) f D(Xp) (K- Xg) (k- Xp) il (K, X4, Xp).
(91)

| D) [ DO (k- Xk ) T (K, X X0)

under inversion implies that the only vaIuEs\,c(na,mb) of

vyr+hn,+m, that survive after integration over the loop
shapesX, and X, correspond to the even valuesmf+ Q,
+32,q; andmy,+Qp+ =g, , namely,

L

na+ Qa+ ;1 q

%

m,+Qp+ Zl al

L
I(ng,my:Tlw) = 2, Pi(ay,af)+min

L

na+ Qa+ Izl a

|

is + 6| min

L

+miny mp+Qp+ 2 a
=1

+ 6| min +2N,

J

where miq- - -} denotes the minimal value df - -} when
the g's and g/’s vary while Q, takes any positive integer
value (zero includegl #(n), which has been defined in
Sec. VI B, ensures that we write the even values taken by
{---}. The point is to know both the minimal value taken by
=h_,q and2|_,q/ in order to determine the even values of
F(na,mb;ﬁwc)—EleP,(q, ,q/), and the minimal odd and
even values taken by|_,P,(q,,q/) when theg,’s andq,’s
vary.

First the minimal odd and even values taken by every
P(q,q’) are derived in Appendix A. The important results

are the following. For tail§ of diagramsﬁwC with L=1, the
algebraic asymptotic behavior of the single elementary alge-

braic tail S([9'] does not involve anyV bond or any con-
volution of W bonds, so thatj=2 andq’=2. In this case,

(92)

As shown in the following two sections, the conclusions areye first allowed value foP(q,q') is
the same for thélﬂwC diagrams in the absence as in the pres-

ence ofBy. On the contrary, the discussion about the con- _
volutions(C is different whetheBy is switched on or not. Pevenmid@,0 ;I ,L=1)=2 with =2 and q'=2,
’ C
(93

B. Tails arising from ﬁWc diagrams

The contribution of a taill coming from a which is realized by affF g bond. The minimal odd allowed

value is given by convolutions involving onlifzs bonds,

(K- Xga)"a(k - Xp) ™Iy (K, X4, Xp) with the result
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] 5 ifinf(q,q’):z Peven mir(qq,;ﬁwal—:z)
Podd,mir{CLq 1HW01L_1)_ 3 |f|nf(q,q’)23 (94) . c
6 if g=q'=1
For tails T of diagrams ﬁWc with L=2, the various =¢4 if (q=1,9'=2) or (=2, 9'=1) (96
Slaa’ls may involve W bonds. Then, the minimal odd 2 if inf(gq,q9")=2.

allowed value forP(q,q’) is
When inf(q,q’)=2, P(q,q’)=2 is realized by anFgg
(95) bond. P(q,q’)=6+2N and P(q,q')=4+2N are realized
by convolutions involving at least orfegg bond. As a con-

which is realized by convolutions where the nonanalyticSéduence, the minimal allowed valuexjf_,Py(q;,q/) fora
terms arise only fronW bonds. Moreover, HWC diagram is

Podgmid 0,91y L=2)=1 forany (q,q"),

m 2, P

L 2 if L=1 inwhichcase =2 andq/=
1(a1,a/) (97)

L if L=2 inwhichcaseq and q’ take any value.

These minimal values are always realized.

Now, the point is to know the minimal odd value, r{ﬁ?"d} of STEE:‘:1P|(q| ,q,’)—min{E{;lP,(q| ,q/)}. For aﬁWC
diagram withL = 1 [called cas€lV) in the following as in Appendix C of Ref5]], sr==_,P,(q,,q/) — 2 and, according to
Eq. (94), the discussion of m{2® can be organized by inspection of the various cases)’=2 (q=2,q'=3) or (q
=3,q'=2), and inf@g,q’')=3. We get

0,1,... ifn, and m, are odd

(N My ;T L=1)=na= 6(ng) — My — 6(My) — 6= (99)

0,2,3... inother cases.
In the casd.=2, according to Eq(96) min{EI 1Pi(0;,9/)}=L and three cases are to be distinguished in order to determine
the minimal odd value obr= 2, ,Pi(a,q/)—L.

Case(l): ;=q/ =1 for all . Then m|r{5°dd} 5 andS _;0)=2q-1"0/ =L

Case(ll): there exists somé, such that q.0=1, q,’0>2), while for alll#14, (q,=1,q/=1) or (q;=1,q,=2) or (q
=2,q/=1). Then mif53*4=3 and=; _,q,=L while £, _,q/ =L+ 1. The same is true when the rolescpf and ar, are
exchanged[We notice that in Ref[5] there is a misprint in the definition of cagk), whereq,=2 must be replaced by,
=2]

Case(lll): there exists somk, such that infq|0,q,’0)>2. Then mir{é‘%dd}zl and25|:1q|>L+1 andEcLh:lq(BLﬂLl.

Then the discussion of Appendix C of Rg5] can be resumedContrarily to what was done in Ref5], the discussion is

carried out for anyn, andm, from the start, and the casag=0 or n,=0 are derived at the endThe first odd value ob;
is

in cas4(l)

oodd in case(ll)
min{ 69 = in casglll) ®9

if inf(q,9’)=2 and 1 if infq,q’)=3 incasglV).

w P W o

By considering from the start the case wheng#0 N ~
andn,#0, we get the same final results as in EG40) F U D (Xa)D(Xp)[k- Xa(7) ] Il (1, Xa,Xp)
of Ref. [5]. [The misprints in Appendix C of Ref[5]
and the mistake in EQq.(C37), which are given in 1
Appendix B of the present paper, do not affect the final x[k‘xb(T’)]mb} ~ (a0t )+ (g mp)
results] e
The results are (100
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where, if n, and m, are odd, §(n,,my)=0,1,... and with 6(n;)+ 6(m; ;)= 60(n;+m; ;). Nonanalytic terms ap-
8(n,,mp)=0,2,3 ... inother cases. The result is the samepear at every ordefk|” 3 with y—3=n;+m; .+ 6(n;)

as in the conclusion of Appendix B of Rd6] because the +6(m,.;)+4 if n; and m,,; are odd, andy—3=n;
important property at stake is E(9). As a consequence, up +m;,;+ 8(n;)+ 6(m;, 1) +5 in other cases. The discussion
to misprints, the results derived in Appendix C of RS] in Sec. IlIF of Ref.[5] can be resumed by replacing Egs.

and stated in Sec. lll E of Ref5] are still valid, (3.34 and(3.35), which are valid only whel,=0, by Egs.
(104) and (105 respectively. The analysis of the nonanalytic
~ 111 terms is similar to that performed in Sec. VI C of the present
f D(Xa)D(Xp) Ty (1, X5, Xp) ~ 689 paper. C;(k,{m;},{n;}) contains two kinds of nonanalytic

r—o

(101) terms. On one hand, the terr[ds]?“/(kz)p, which arise from
the breaking of rotational invariance W§,, are of order

where the brief notation in Eq101) means that there appear D¢,,D¢,+2D¢+4, ... in[k|, whereD, is given by the

tails decaying as 1f, 1/8, 1i”, with y=9. Moreover, the dimensional analysis of Sec. VIB. On the other hand, the

following property is valid for aﬁwc diagram in the absence Nnonanalytic terms involving at least ofeare of orderD,

as well as in the presence Bf, +3, D¢ +5, D +6, ... as in thediscussion of Sec. Il F

of Ref.[5]. According to Eq.(84), DCImin=2 and

Ft JD(xa>D<xb>[e‘k'Xa<”—1]ﬁwc<r,xa,xb)} .
11
11 1 f D(Xa)D(Xp)Ca, (1, Xa,Xp) ~ S
~ 102) ““’
r8 plo’ i ( (106
while whereas
oXo(r) 4 1 1 1
]—“1“ D(Xa)D(Xp)[e™ Xa? = 1]y, (1, X4, Xp) f D(X2)D(Xp)Co —o(F, Xa Xp) ~ —1—my—my o . ..
0 F oo r8 r10 rll
N 11 (107)
X[ e~k Xpl7 >—1]} ~ 5T (103
1o’y . . . . .
r—e According to the dimensional analysis already performed in

] o o Appendix D of Ref.[5], the structure of the nonanalytic
As a comment, the discussion in Appendix A is analogouserms in D (X,)D(Xy)[explik-Xa(7)} —1]C(K, X4, X;,) is
to that of Appendix B of Ref[5]. Because of a mistake, the {he same as fag, (k,{m;},{n;}), with D, replaced by
conclusiongB10) and (B11) of the latter Appendix turn out !

to be valid only in the presence of the magnetic fiBig, -
whereas they must be modified whBp=0, as displayed in D¢, =—21+[1+my+6(1+my)]+n+6(n)
Appendix C of the present paper. However, the conclusions
(94) and (96), which are weaker than Eq&810) and(B11),

1-1

are valid whetheB,=0 or By#0 and they ensure that the +i=21 [rit My a0y ] (108
I'(na,my;Ily)’s are the same in the presence or in the ab-
sence of the magnetic field. The minimal value 015(;I is also 2 and

C. Tails arising from convolutions C

1 ik-Xa(7) _
Thanks to the study of the leading and subleading tails of F U D(X2)D(Xp)[e 1]CBo(k'xa’xb)

ﬁWc' Egs.(82) and(83) can be written more precisely as

111
~ T g e (109
Kgﬁl](k):Og:;ro(ml))(k)+O;T;I+0(m1)+2)(k)+... A2
(my + 6(my) +3)
rem T (1049 \yhereas
where the next nonanalytic terms are of order
|K[MatemD+5 [ matam)+6 " hile jr1U D(Xa)D(Xp)[€* X"~ 1]C5 _o(k,Xa,Xp)
[nj ,m;] _ ~MjEm g+ 6N+ mi L))
’Ci,i+l (k)_oanal +1 +1 (k) L )
+O;’;i;mwﬁ0(ni+mi+1)+2)(k)+ o r:ocr_B,F)’F‘, e (110

(nj+m; 1+ 6(n)+6(m;1)+3)
+STT vk A In  the case of [D(X,)D(Xy)[explik-X,(7)}

(105 —1]C(k,Xa, Xp)[exp{—ik-Xp(7')}—1], D, is replaced by
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implies that, if a diagranil behaves as 47 and may be

De=—201+[1+m+6(1+my)]+[1+n+6(1+ _ i
G [ my+ oL my [0+ 6(1+n)] convoluted withF°¢ bonds, then the contribution &S 1T to

-1 Eaeapf,) T(r) falls off at least as 1/'*2 and the contribution
+21 [ni+mj 1+ 0(ni+m;q)] (11D from Sp*I1*3p to =, ,€,e,02) '(r) decays at least as
“

1/r"*4. More precisely, the tails 4772 and 1t"** do exist
only if the k? term arising from Eq(115) does not cancel the
J o 1/k? singularity of the Coulomb potential; otherwise, the
only at the 0rde5q+5. The minimal value foﬁcI is equal leading algebraic tails are replaced by short-ranged behav-
to 2 also. Thus lors.
The previous mechanism for a cascade of power laws can
. be worked out as follows. First we reorganize the diagrams
Fl[f D(Xa)D(Xb)[e'k'Xa(T>—1]CBO(k,Xa,Xb) in order to produce integral relations in whidy, appears
explicitly. For that purpose, we introduce the following defi-
_ , 111 1 nitions. We call a “Coulomb-root” point a root point, that
x[e TkXalr )—1]} ~ ==, = ... (112 s involved either in one and only one boRd%(L,,P;) or
roel™ 10 17T F°™(L,,P;). On the contrary, a non-Coulomb-root poifi
is involved either in one bonBg(L,,P) or F"Y(L,,P;) or
whereas in at least two bonds, whatever they are. het (£, ,L,) be
the sum of thdI diagrams where, is a non-Coulomb-root
point, whereas.,, is of any kind (Coulomb-root or non-
Coulomb-root point h""(£,,L,) is defined in a similar
way. With these definitions, the excluded-convolution rules
x[eik'xa“')—l]) B iloill o 113 lead to the left-dressing relation
ol T h=F%+FeM4+3 «h" +F My h (116)

but the nonanalytic terms involving at least okeappear

Fl(f D(Xa)D(Xp)[e" X" —=1]Cq _o(k,Xa,Xp)

The present results whe,=0 are more precise than those 5 well as to the right-dressing relation

given in Ref.[5]. (We notice that some misprints in Appen-

dix D of Ref.[5] do not affect the results given in the latter h=F%+FM+h "3 +h* pF™C, (117
reference. According to Eqs.(107), (110, and (113, the

tails 1+° 17, and 1f° disappear wherBo=0, because where the definition oh~"(L,,Ly) is obtained from that of
they come only from the nonanalyticities due to the breakinth"~ (£, , £,) by exchanging the roles of, and £,,. These

of rotational invariance in the presenceRy, whereas tails relations are convolutions for the loop-position variable
1r 1N with N=0, come from both breaking of rotational while the internal degrees of freedom of the intermediate

invariance and singularities in th€’s. loop are integrated over. In these short notations, we use the
convention thap is the density of the intermediate point of
VIIl. LEADING AND SUBLEADING ALGEBRAIC TAILS the convolution and thal, is the Debye polarization cloud
OF VARIOUS CORRELATIONS around the root point of the convolutidas detailed in Sec.

IV C of [5]). There are two extra integral relations,
A. Interplay with the “Debye dressing”

First, we exhibit a property of the boref® when charges h™"=FM+ 3 p*h""+ FMpx h =" (118
are summed over. In the following the “Debye” polarization

cloud of loops around a loog, is defined as and
35(Ra=R1,X1:Xa) = 8y, .1, (Ra—Ry) h"™=FMC+h""% 3+ h" "% pF™MC, (119
+p(x1)F°(L,,L1). (114 By using the above relations repeatedly, we decompose

as a sum of five terms which are convenient to discuss the
In 3 the variable after “;” always denotes a root point. l€ading and subleading tails of various correlations because

(This notation is slightly different from that of R§6] and is ~ they exhibit dressings bY andpF™. The decomposition
more precise.The property is introduced in Sec. IVD of Re"[l] The first One,h(A),

decays faster than any inverse power law of the distance and
the other ones read

f aneaapap(Xa)zD(k:X1 Xa)

he)=Zp*h"™2p, (1209
k2
= - — n— mc
_ealplp(Xl)K2+k2 h(c)—ED*h * pF™MC (120b
hip)=FMp*h™ "3, 120
€4,P1p(X1) (D) p D (1200
=—————Kk2+0([k|* (115

K? hg)=F°Tp*h* pF™, (1200
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The leading and subleading algebraic tails of the particletions. We show that they can be expressed only in terms of
particle correlations at large distances are derived from thé"" with various dressings that invo\2y or/fandpF™¢.
detailed study of the asymptotic behavi¢t91) and(106) of

diagram":ﬁ\,\,c and convolutiong, respectively. We find that 1. Basic properties

The derivation relies on two kinds of ingredients. First,

T 11 we use repeatedly dressing relations that are valid in the
Pay |B0 YTt (121)  presence as well as in the absenc8gf Some have already
roel = T been given in Eqs(116)—(119); the other ones are
Inspection of the more refined results01)—(103), (106), F% pF™Y(K, x2.,x5) = O(|k[2) (127)

(109, and(112 shows the following important results which
are valid in the presence as well as in the absencByf and
(apart from the first one which is only relevant to the the case
By#0). FM% pF™ (K, x2,xp) = O(|K|?). (128
(I) The 1£° tail comes fromhgy+h(c)+hp)+hg) .
(Il) The 1£° tail originates only fromh g, .
(I The 1f8 tail arises fromhg,+h(c)+hp).
(IV) The 11 tail comes fromhg)+hc)+h(py+hg - :
The cascade of power laws may now be discussed than®QINts,
to the above remark about the origin of the subleading tails

Second, the detailed survey of the decay of diagrams has
shown that, in the presence Bf, any diagram decays at
least as TP after integration over the shap¥sof the root

1
in terms of the contributiongy, hc), hpy, andhg,. f D(Xa)p()(a)f D(Xp)p(xp)g (. xa:x0) ~ 5
Indeed, according to Eql15), for B;=0 or By#0, the roe
terms contributing to the 89 tail of p)T become (129

1r® (1r') tails in 2,607 (2,,,6.8,0)") or decay whereas, in the absence Bf, Eqs.(103 and (113 imply
faster; the terms contributing to ther 1Aail of p(aZy)T become that

at least 1% tails when charges of both species are summed

over. 1

Consequently, the tails of the particle-charge and charge- a [f D(Xa)p(xa)f D(Xp)p(Xo)

charge correlations in the presenceBgfare

. 1
D11 X[elk-Xa(T)—1]HBO=0(k,XayXb)} ~ 8 (130
)T -~ - = F—
Ey €Pay |Bor_mr5’ AT R (122
and
1111 .
Zy eaeyp(azy)T|Bo ~ r_5r_7r_9@ e (123 J—“l{f D(Xa)p()(a)f D(Xb)p(xb)[e*""xa“)—l]
a, r—o

WhenB,=0, the 1t° and 1t tails, which arise from the
convolutionsC, disappear inp?T according to Eq(107).

Moreover, inspection of Eq$16])—(103), (107, (110, and
(113 shows that the 17 tail of p{?)" comes only fromh, ~ Third, the Debye screening described by EL5) will play
when B,=0 and, according to Eq(115), it disappears as a role when charges are summed over.

soon as charges are summed ofl@cause the order of the

ik-Xp (') 1
X[ 1Mo koxa o) | ~ S5 (13D

r—oo

possible singularity in Fourier space is increased by a term 2. In the presence of B
proportional tolk|?). As a consequence, The analysis based on the previous properties shows that
111 the leading I tail of the particle-particle correlatiop?)"
comes only from
p(2»3T|B0:O -~ r_eyr_sar_Qy ey (124) y
'* SExhMx3E (132
1 1 1 In E h
)T o+ s 4 n Eq. (132) we have set
Ey €yPay |B°:0Hx CEMTUSTIRERS (129
S5 x2:x0) =2p(K, X2 x0) + P(X2) F™ K, X2, Xb),
133
7T 11 s
> e, Me=0~ 5 - - (126 i i
= Way 1Bo=0 " 110" 11 where the variable after “;” is a Coulomb-root point far,

as well as folF"°¢ and the superscripta andc are associated

with the internal poinjy, and the root poiny, , respectively.
The 1+° asymptotic behavior of the particle-charge cor-
In this section we only consider the leading tails of therelation Eyeyp(ofy)T may originate only from the 17 tail of

particle-particle, particle-charge, and charge-charge correlahe particle-particle correlation. According to E({.15), if

B. Diagrammatic structure of leading tails
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ID(X2) p(xa) SD(Xp) p(xu)[TI*251(r, xa,xp) decreases as asymptotic behaviors. As a consequence, the diagrammatic

1", then, after summation over, the 1f" falloff turns into
a slower decay, at leastrl/ 2. Therefore, inSE*h"«3 %
only the part

S5 %hs pFme (134

does contribute to the 1 tail of the particle-charge corre-

lation. For the same reason, the *LAsymptotic behavior of
the charge-charge correlation arises only from
chp* h" M mec_ (135)

We notice that, as charges are summed over, thetails,

structure of the latter ones is more and more complex as
charges are summed over.

C. Induced charge
1. Basic formulas

First, we exhibit the expression of the internal screening
rule (1) in terms of the loop Ursell functioh and its “De-
bye” approximationF°¢. According to Eqs(33), (34), (71),
and Eq.(4.9 of Ref.[1], Eq. (1) reads

0=f dl’zy eysay(r)zpazzl f D(Xa)pap(xa)

all of which originate from the same diagrammatic structure

(132, involve in fact fewer and fewer contributions.

3. In the absence of B
As already mentioned in Sec. VIIIA, the leadingr&/
decay of the particle-particle correlati(prffy)T is due only to
h), namely, to

Spxh"M* 3. (136

()1

u; COmes

On the contrary, the i$ subleading tail ofp

from hgy+hy+hp). After summation over the charge

e,, the 1t® tail coming fromhpy turns into a 17*° decay.
By using the basic properti€$27), (128), and(130) together
with the fact that any diagram decays at least a$ after
integration over the loop shapes, the8ltail in h is
shown to originate only from the parkp*h""*[pF™¢
+ pFc% pF™e]. Eventually, the ¥f behavior of the particle-
charge correlation reduces to the asymptotic decay of

Sprhmes e (137)

In Eq. (137 2£* (K, x2;xp) is defined as
5 =Zp+pFMH pFe pFM =3 px [ 5+ pF™],
(138

where the variable after “” in 35* (K,x2;xp) is a
Coulomb-root point as in the definition &. The 1f%°

subleading tail ofp{?)" originates fromh g+ h(c)+hp

XG{h,FCC}(k:O,Xa), (140)

where

Po —ik-Xp(7) .
Gi(k,x)= | dxpp(xv)ea, . dre "7 (K, x; xb).-
(141
ind

The induced chargg e, p."(r;5q) in the presence of an
infinitesimal external point chargéqg located atr =0 can be
derived in two different ways. First, it may be obtained by
linearizing the result for the particle-charge correlation

,8,p)T(r) with respect to the charge, . Indeed, a quite
general statement is that

@7
Ey €yPay (1)
ind/ .. ;
Ey e,p5(r;e,,p,=0)= lim

Pa—0 @

. (142

This relation states that the charge density induced by one
chargee,, different from those in the plasma can be retrieved
from the particle-charge correlation in the limit where one
speciesa becomes more and more dilute, so that it disap-
pears from the plasma. In order to obtain the response to an
infinitesimal charge, one must linearize the right-hand side of
Eq. (142 with respect toe, .

The induced charge may also be calculated directly from
the linear response theory, valid for any distributiéar).
According to Sec. IV E of Refl5], the structure of the latter

that the 1/'° tail of hy comes in fact only from
ED* hnn*ED*meC, that th(D) fl’0m chp*ED* hnn*zD,
and that ofh gy from FMpx X pxh""* 3 p* pF™C, Eventually,

the 119 tail of the charge-charge correlation originates only “a

from

SEF AT (139

charge correlation. It reads

> e.pid(k; 6q)

oq(k)
K*(k)  4AmpB
T K>+ k? - k2 J' dxapae“ap(Xa)G{h*Fcc}(kvXa)y

As a final remark, we compare the formulas in both cases,

By=0 andBy#0. On one hand, in the presence Bf, the
Debye screening relatiofl15 makes; disappear in the

(143

1/r5 tail as more charges are summed over. On the otheihere we have set

hand, in the absence &,, X is responsible for the cas-
cade of power laws in the leading tails and it remains in the
diagrams that do contribute to the coefficients of the

pd7 .
K2(K)=4mp f dxp2e?p(x) f —pTe'k'XW (144
0
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According to the definition(34) of «, external screening conditionél), (2), and (3). In other
o ) 4 words, F°° saturates the basic screening sum ruleskgs
k“(K) = k[ 1+ Agna(K) 1+ O([k[), (149 does in the classical case. Thus, according to B0 and

2) (143, the proof of the internal and perfect external screening

whereA?) (k) is a term of ordefklz_which is anaiytic inthe . ounts to showing that— F°° gives a contribution of or-
components ok. [The next term is of ordefk|* because o, greater thank| 10 =, [D(X.)Pap(xa)Gin—req (K, xa)

p(x) is invariant under inversion ofX.] When By, 2
=0, A2 (k) is exactly proportional t?, whereas, when and greater that.k| 0 JdXaPaCe,p(Xa) Gin-recy(KiXa)-
First, we notice that, though the smaéllexpansions of

Bo#0, AlZ)(k) may be written as the sum ofl& term and :
o5 ana(k) may ) . Gs_ and G emc Start at the ordefk| separately, their sum
a[k]; term. Moreover A (k) starts at order zero in loop D P )
density. Gy starts at the ordek|?,
K?(k)
K>+ k?

2. Perfect external screening

prd_Te—ik-xz(f)

GEB(k1X2):p(X2)pZEa2|:1 o Pa

First, we recall the mechanism in the classical case. The
classical Ursell functiom®*Yr,r,) can be decomposed as

ay
k2
= P2€a,| — — At K)+ O(K[*) . (150
Rt 3 Sania) S 2 s ), oo
(146 Therefore we use the dressing relations of Sec. VIIIA re-
cc . ) peatedly in order to makEf appear on the right side of the
where Fp ., = —B€.8,¢p and ¢p is the Debye potential gypression ofh—FeC. Then, as already done in the case

dp=exprpn)ir With kp=\47BZ p,e%. ZH(ra—rp, whereB,=0 in Sec. IVE of Ref[5], h—F°° is written as

;@) =04,,0(Fa= ) +p,F B a, and hi1 %" is the sum of the sum of three contributiondi .+, which decays faster

the diagrams with non-Coulomb-root points that are builtthan any inverse power law of the distance,

with the bondsFg’,, and FR9=exdFy,,—Bussl—1 o

—F&,,. Wherevsgis a repulsive short-ranged potential that Nax)=Zp*F™ e+ FEMEE +{Zp+ FMppx FM% pF ™,

prevents the collapse of opposite <|:harge§R(was omitted (159

in Sec. IVA of Ref.[5]). Thush" "9 decays faster than _

any inverse power law and its Fourier trans);orm is analytic. hegs)=2p*{h"™ 25" +h"xpF™%pF™Y, (152

As shown in Ref[5], since and

e hice)=F°Mpx{h™ " X" + hx pFM%pF™%}. (153

> e, 38k, yi) = — k*+O(|k[*) (147 _ _

Y KD In fact, there appears a right dressing not onlylybut also
by pF¢% pF™¢ so thatX5* shows up again together with

and, according to Eq146), the internal screening ruldg) - iher right dressing byF™ pF™. Since

and (2) are satisfied b)EYeySﬁ(';eg as well as by its Debye
approximationEyeych'. Moreover, the first term in the K2(K)[ k3(K) — k2]

smallk expansion of the classical charge-charge correlation G{chc*meC}(k,Xz)=P(X2)Pzea2

2 2\2
CHYK) =3, ,e,8,02) T *YK) + = e,p% is equal to its (= H k)
value in the Debye approximation. Therefore both charge- =p(X2)P2e,. A2 k)+O(|k|*)
) . ) pP(X2)P2€q, anal
charge correlation&he exact and Debye expressipratisfy
the Stillinger-Lovett sum rule (154
| k2 the smallk expansion ol’GEB* starts by &? term,
Co*qk) ~ . 148
W = amp (148 2

k
Gyxx (K, x2)= e,.— +O(|k|® 15
On the other hand, according to the linear response relation *b (kix2)=p(x2)P2 2 2 (k% (159

in the classical regime,
while the smallk expansion ofG gmex pFme has a structure
S e,p™k: 5q) analogous to that o6, ,rccx pFmq given in Eq.(154),

= —BCU Y K)ve(k). (149  Gprmer pFmg(K,x2) = p(X2)P2Ca,Asmal K)

oq(k)
o dr_ .
Thus the rule(148 ensures that an infinitesimal external ><fpz—T[e"“xzm—1]+O(|k|4).
charge distribution is completely screened by the medium: o P2
3,e,p7%%k=0)=—8q(k=0). (156)

In the quantum case, according to E¢s40), (143), and
(144), when the Ursell functioh is approximated by the sole As a consequence, the Fourier transformsGef % 5* and
bondF°¢, it happens to satisfy both the internal and perfectGry, prmex pFme Start at least at ordgk|? (in fact, at order
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|k|® in the case 0fGr1y pemes peme) While GED* eme Starts at  bye polarization cloud and the invariance under rotations.

Indeed, the latter allows the harmonicity of the Coulomb
potential to play a role: it changes leading tails that waald
priori decay algebraically asr®, 1/’, and 1¢° into short-
ranged fall off's, and it induces the special structure of the
leading and subleading algebraic tail80) and (131).

order|k|2. Therefore the first internal screening ryl re-
written in Eq. (140 is satisfied, while the second of® is
also obeyed sinc8,,(r) is invariant under rotations.

On the other handfdxapaeaap(xa)f(k,X;Xa), with f

=3 or f=pF°®™G, starts at least at ordék| [in fact at
order|k|? whenf=3p, according to Eq(115]. Eventually,

the above decomposition bfexhibits the fact that the small- ACKNOWLEDGMENT
k expansion of dxaPa€q. Gn-req (K, xa) Starts at ordejk|® This work was partially supported by the gten Rhane-
and according to Eq(143 the external screening rule is Alpes.
satisfied.
APPENDIX A

3. Large-distance decay

In this section we show that the induced charge density In this appendix we study the first values taken by

decays with the same power law as the particle-charge cof2(d:a") for any elementary algebraic ta849'] which
relation. [After only a quick glance at the linear response &€ use(_j in S_ec. VIIB. The dl_scussmn is z_analogogs to that of
expressior(143), one might have rather thought that the in- APPendix B in Ref[5]. The differences will be pointed out
duced charge density should decay a®17 if the particle- &S comments. The discussion is carried out in ,two steps. In
charge correlation falls off as rP]. The property to be the first step, we consider the case whef@!%9] comes
proved means that if the first nonanalytic term in thefrom a single algebraic bond which is possibly convoluted
Fourier transform of the particle-charge correlation is ofwith fast decaying functions. Then the prope(B) defined
order |k|P™3, then the first nonanalytic term in in Egs.(88) and (89 is obviously satisfied. In the second
JdxaPa€a,p(Xa) Gin-roey(K,xa) is equal to a nonanalytic step, convolutions involving more than one algebraic bond
term of greater order, namely, of ordge]P~L. The latter ~are considered. We also present results waéh9'l con-
property is nontrivial. tains noW bond, because this case corresponds to the alge-

In fact, the dressing devised to prove the external screerbraic tails of all,, diagram withL =1, which is considered
ing sum rule is to be pushed further in order to get the any, gec. VIIB. Thec details are the following.
nounced result. At the same time we get the diagrammatic
structures of the leading tails of the induced charge density. ] ) .
These structures turn out to involve orty™—with a proper Td', i.€., P(q,q’)=1.,|f sladl comes from a single
dressing—as the leading tails of the internal correlations. bondFgg, then, SVt 1=H5V:V1w[mp'”p1, with my>1 and

In the presence dB,, according to the screening proper- n,=1 and P,=2. So y=P+q+q’, with P=P,, ¢
ties (115, (155, and (156), and again since any diagram zzgzlmp, andq’zEf,’:lnp and allP(q,q’)’s such that
decays at least asrf/after integration over the shap¥ss
of the root pointsee Eq(129)], h(g+) proves to be respon- 2<P(q,q’)<inf(q,q") (A1)
sible for an algebraic decay in the induced charge density
that falls off at least as Af at large distances. By using the are realized.
same propertiegexcept for Eq.(115)] together with Egs. Now, we consider the case in whi@%9'] comes from
(127 and (128 and the right-(left-) dressing relation for a single algebraic bond in convolution with two fast-
h (h™7), we obtain thath.cs) gives a 1° tail to the in- decaying functiongF19R1 and FIQ1:9'] where the various
duced charge density. The latter tail comes in fact only fro”%uperscriptiQ,Q’] have the same meaning as in the defi-
nition of property B). In the following, internal degrees of
freedom that are different from the shapésare omitted.

In the absence dB,, in Sec. IVE of Ref[5], the right-  The expression o8”[49) in Fourier space reads
dressing relations together with the “screening” properties .
(115, (155, and the behavior¢130) and (131) of the S, ¥%9(k,z,z")
decays of diagrams are unchanged when a factor
JBdrexdik- Xy(7)] is introduced. By using them repeatedly, :f D(Xl)f D(Xi)F(l”)[q'Ql](k,Z,Xl)
we get that the induced charge density decaysrds More-
over, the latter tail arises only from

If SIaa’l comes from a single bonw/ then y=1+q

FCMox h"Mx [3 5% 4+ pFM% pF™e], (157

% S(yrs)[ql,qil(kyxl ,Xi)F;nl)[Ql'q/](k,Xi Z").

S ExhMe 3 K* (158 (A2)

as already implicitly shown in Sec. IV E of Rdb]. [0.Q4] Q4] _ . .
As a conclusion, in the presence of the magnetic field" andFf<1 ! are analytic terms in Fourier space, and

there is no cascade of power laws for the leading behavior® Ed- (A2) n (n’) denotes the order of the first term in the
of the correlations when charges are summed over. In themallk expansion off (92l (F[Q1.4']l) that gives a nonva-
absence of magnetic field, this cascade is generated by timéshing contribution after integration over the shapes
combination of the remarkable screening property of the DeX; (X;) of the intermediate loop. When n
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=0, FOM.Qd(k 7 X,)=F[4Ql(k=0,Z,X,) and whenn SEJY))[q,Q’](k,Z'Zr)
=1, FMIEQil(k, z X,)= fdxi(k-x)F4Qi(x,Z X,). Thus
the order in|k| of the nonanalytic terntA2) is y— 3 with J J

mf J_ljl D(X;) J_ljl D(X[)F1(k,Z,Xy)

y=7y;+n+n’, (A3)

wheren andn’ take the value 0 or 1 that is determined by (k- Xq)N(k-X1)% /
TS . . O X Fo(k,X],X5)
invariance under inversion as follows. We use the invariance k2
of D(X;) under X;——X; and the invariance of
FlaQil(k,Z X,) under global inversion of its arguments, as q "l

L . (k-X2)%2(k-X5)™2
well as the definitions of the superscriggig and Q. If n X 5 e Fy(k, X521, X))
=0, Sr-3aal(k —7 7)=(—1)Nusr-adl(k 7 7"y, K
while, if n=1, ,

(k-X;)%(k-X5)% o
Sw_s)[q’q/](k,—Z,Z’)=(—1)q1+1S(7_3)[q’q,](k,Z,Z’). X k2 FJ+1(k1XJ !Z ) (A6)

In the absence of magnetic field, the rotational invariance
ensures that, sincg; is an analytic function ok, for j
=1,...J-1,

On the other hand, the definition of the superscript
q is SNl —z,z")=(-1)9s-dadl(k 7 7).
Hence, g and g;+n have the same parity. Since;
=P4(q;,97) +d;:+q; with inf(g,,q7)=P;, we can write .
y=P+q+q’ with P=P,(q;,q;) and g=qg;+n=P and D(Xj,)f D(Xj+ 1) (K- X)) UFjy1(KX{, X 41)
q’'=q;+n’=P, so that propertie¢A) and (B) are both sat-
isfied. We notice that ifg=1, then =0, q;=1) so that
P=1. This property will be preserved in the second step of
the discussion.

In a second step, we consider the case whier@ alge-
braic bonds are involved in the convolution. After integration
over the intermediate points of every product made of a
nonanalytic term times an analytic one, such a convolutiorThus Eq.(A6) may still contain a nonanalytic term, namely,

x(k.xj+1)Qj+1

— | K| i1 00 Gy 1) A}?ﬁgl ARk, (A7)

reads in Fourier space, as in E§6) of Ref. [5], a 1/k|? term, after integration over the loop shapes but only
in the caseqj’=qj+l=1 forj=1,...J—1. In this caseP,
SE}))[q'q'](k,Z,Z’) =1 for all j’s and in formula(A5) only the term withN

=0, i.e.,P(q,q')=1, corresponds to an algebraic tail while

J-1 the other values o correspond to short-ranged decays. Fi-
_ (v1-3)[a.95] lly, only the valueP(qg,q’)=1 is realized wherB,=0.
= [ |11 dxjp(x)|S Yk, 4oxa) nally, only d.d > 1€ e,
f [i=1 IPAX =) X In the presence of the magnetic field, the invariance under
rotations is broken in one space direction, and in(&q.), in
X SEZf_s)[qz'qé](k,Xl,Xz). .. plazci?f|'k|qj';:ﬁlfo(qf*qiﬂ),, there appears a sum of terms
k|2 =MIK]S™ with Nj=q] +dj. 1+ 6(q] +0;41) and n;
-3)[q;.9’ , =0,... N,. Thus nonanalytic terms of t remain
RSN (A%) J y YPES

after integration over the loop shapes and in E&b) all
. ] . ] values ofN do correspond to some algebraic tails, namely,
After integration over the shapes of the internal poigfs  a|| valuesP(q,q’)=1+2N with N=0 are indeed realized.
inversion invariance implies that only even values gjf Case(2). There exists at least ong; #1. Then, the
: _ ' ’ ; 0
+0j+1 do contribute. Henceforty=P(q,9") +q+a’ with 5 naivticity is never canceled by the integration over loop
| - shapes, becausS(Vio‘3)[qio'qJ'0](k,XjO,Xj’O) arises from an
P(q,q’)=3—3J+2 Pj+2 [Pj+P; 1+ O(P;+P; 1)] .FR6 bond. The valyes taken by(q,q )_ are determlngd by
=1 =1 inspection, according to the discussion of Appendix B of
Ref. [5] just after Eq.(B9). If q=q'=1, thenP;=P;=1
and the values given by Eqg.(A5) are P(q,q’)
) =6,7,.... (P(9,9')=6 [P(g,9’)=7] is realized when
One must consider two cases, because the results are not the= 1 for all j’'s except ong, that is different from 1 and
same in the presence or in the absence of magnetic field. a|!1d P, =2 [P, =3].) Contrarily, if g>1 (or q'>1) then
— - _ 0 0 !

_Case(l). If PJ. liorallj=1,...J (namely, al hohana P, (or P;) may take the value 2 and the values given by Eq.
Iytic tgrms arise fromW bondg, the corresponding (A5) areP(g,q’) =4+ 2N, so thatP(q,q’)=4 is also real-
staa ](K,Z,Z') comes  from a  convolution jzed.[P(q,q')=4 is realized wherP;=1 for all j's except
Forwl0 s Foxwl@2 Gl Fox . F ewl% @l Fy and  j=1 if eitherq>1 orj=J if q’'>1.]
the corresponding nonanalytic term reads As a conclusion, wheBy=0

+2N. (A5)
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16,7... if g=q’'=1
1,46,7... if (g=1,9'=2) or (g=2, q'=1)

POA)= o a5, i infq.q)=2 (A8)
1.2,... if inf(g,q")=3.

WhenBy# 0, Eqg. (B10) of Ref.[5] is still valid (up to a misprint and reads

1356... if q=q'=1
P(g,9")=4 1.34... if (q=1, qg'=2) or (q=2, q'=1) (A9)
12,... ifinf(q,q")=2.

Finally, in view of the discussion in Sec. VII B, we conside®@!%9'] without anyW bond. This is the case of a tdilwith
L=1 arising from aﬁwC diagram. When only one algebraic bond is involved then it isFag, and 2<P(q,q’)

<inf(q,q"). In the case of a convolution @=2 algebraic bonds without arly/ bond in the convolutionP;=2 for all j
=1,...J and inf(@,q")=2. If P;=2 for all j’s, then, according to Eq(AS5), P(q,q’)=3J—1+2N takes the values

P(9,q")=5+2N for J=2, P(q,q")=8+2N for J=3, ... . If P;=2 for all j’s exceptP,=3, thenP(q,q')=3J+2+2N
takes the values-62N for J=2, ... . Finally, whenJ varies,P(q,q')=5,7,8 . .. . Moreover, the convolutions of cas#)
do not exist and the results are the same in the presence or in the absence of magnetic field. As a conclusion,
257.8... if inf(gq,q’')=2
- 2,35,78... if inf(q,q’)=3
P(dq,q9"; 1y ,L=1)= A10
(@.a" L =1) 2,3,45,7,8... if inf(q,q")=45 (AL0)
2,3,... if inf(q,q")=6.

In fact, the important results for the discussion of the dia-=3 or P=5, because the corresponding terms are in fact
grams(91) are the minimal odd and even values given inanalytic wherB,=0; indeed, the K2 singularity is canceled
Egs.(94) and (96). by the propertyfdx;p(x;) ALl (X;) Al (X;) 5, ,. (On the
contrary, ifBy#0, thenP=3,5 are realizedl.Subsequently,
in the same paragraphP(q,q’) may take the values
APPENDIX B P(q,9')=1,4,6,7, as soog’ =2 org=2, and not the values
In this appendix we give the errata for Appendix B of Ref. 3 and 5. Eventually, E{B10) must be replaced by E¢AS).
[5] which deals with the structure of elementary algebraictowever, the important result remains the same: the first
tails defined in Sec. Il D of the latter reference before inte-€ven values taken by(q,q’) are those given in Eq96). If
gration over the loop shapes of their end points. We recaffnere is now bond in the convolution, theq=2 andq’
that the definition of these tails is not the same as that giver£ 2 and the first allowed value fdP(q.,q’) is 2, and Eq.
in Sec. VII A of the present paper. The results apply only to(B11) is to be replaced by EqA10). However, the impor-
the caseB,=0. tant result is about the first odd value taken Byq,q’)
(1) The expressiohl P CAR PAPRER PAPRI(F4) which is given in Eq.(94). Py (0,9")=23, ... inf(q,q")

which was written just after E¢3.26 and in the second line €omes from arFge. The values 5,7,8 . . arerealized by a
of Eg. (B2) is not general enough, because the tensofonvolution.

Al 71y may contain both components ], and ten- (4) In the case oflly, diagrams, the valu®(q,q")=3
sc{)r}sé . was om|t_ted in Eq(B11) of Ref. [5], though it appears as
Vintitl . soon as inf@,q’)=3, whetheB,=0 or By+#0.
(2) After Eq. (B2), the sentence “The tens@éiﬁm(z’)
of rank q; ., is nonzero only ifg;, , is even” must be re- APPENDIX C

@ [a;+n] ' ' :
placed by “The tensoA{ }1 (Z7) of rankq1+,n is of par- In the present appendix we give errata for Appendix C of
ity (—1)%*" . As a consequencd,D(Z’)Aiq}lw](Z’), is  Ref.[5] which deals with the structure of algebraic tails for
nonzero only ifq;+n is even.” various functions involving diagramHWc. Appendix C of

(3) If By=0, the following modification has to be made. Ref.[5] proves to be valid wheBy# 0.
After Eq. (B9), when theP;’s vary the first even value for If Bo=0, then the correct version of EB10) of Ref.[5]
P(1,1) is 6, andP(1,1) does not take the values with  that is given in Eq(A8) of the present paper causes a modi-
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fication of Egqs(C1), (C3), and(C4), which become, respec- namely, Eq.(A10) of the present paper, the correct version

tively,
Stn=0,5, ..., (C1)
Stn=0,356..., (C2
and
Stn=01,34.... (C3

According to the modified version of EB11) of Ref.[5],

of Eq.(CH) is

0,35,6... if inf(q,q’)=2
St = ca
T™10,1,356... if inf(q,q)=3. (4

However, the important result for the discussion of
Eq(92) is that given in Eq.(99). Then, the discussion of
Appendix C is unchanged, apart from the following misprint:
Eq. (C37 must be replaced by E¢C40 of Ref.[5], namely,
by Eqg. (98) of the present paper.
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