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Quantum plasmas with or without a uniform magnetic field. I.
General formalism and algebraic tails of correlations

F. Cornu
Laboratoire de Physique, Laboratoire associe´ au CNRS URA 1325, Ecole Normale Supe´rieure de Lyon,

46 allée d’Italie, F-69364 Lyon Cedex 07, France
~Received 20 January 1998!

Large-distance quantum static correlations are investigated in a fluid of point charges interacting via Cou-
lomb forces in the presence of a uniform magnetic fieldB0 . Moreover, each particle carries a spinorial
magnetic momentum which is coupled toB0 . In the framework of quantum statistics, the present formalism
uses the Feynman-Kac-Itoˆ formula to represent the matrix elements of the quantum Gibbs factor. Particles
which are exchanged with one another under a cyclic permutation are equivalent to loops with random shapes;
the latter ones obey Maxwell-Boltzmann statistics and interact via some two-body potential which decays as
1/r at large distancesr . B0 appears only in a phase factor which can be absorbed in some generalized fugacity
~which may take negative values in the case of fermions!. Collective Debye screening effects show up through
exact systematic resummations of long-ranged Coulomb divergencies which are the same in the presence as in
the absence ofB0 . The averages of monopole-monopole and monopole-multipole interactions between sets
made by charges and their polarization clouds decay exponentially.B0 breaks the rotational symmetry and
effective quantum quadrupolar interactions emerge, as can also be seen in an exactly solvable model. As is also
the case for a charge of the medium, an external infinitesimal charge is completely screened by the total charge
of the induced polarization cloud. The latter decays as 1/r 5 as the particle-charge correlation. Subleading tails
are also investigated. The interplay with classical Debye screening is discussed.@S1063-651X~98!02610-5#

PACS number~s!: 05.30.2d, 05.70.Ce, 71.45.Gm
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I. INTRODUCTION

Matter at our scale can be essentially considered as a
relativistic quantum system of electrons and nuclei intera
ing via the Coulomb potential: the interaction between t
point chargesea andeg ~wherea andg are species indices!
separated by a distancer is eaegvC(r ) with vC(r )51/r . The
standard many-body perturbation theory using Feynman
grams at finite temperature does not seem to be adequat
tackling the problem of the large-distance behaviors of po
tion correlations @1#; in the special case of the one
component plasma~OCP!—a system made of one species
charges moving in a uniform electric background—one c
only exhibit some diagrammatic corrections to the rand
phase approximation which induce algebraic tails in
charge-charge correlation of the quantum electron gas@2#.
Recently path integral formalisms properly adapted to d
with the long range of the Coulomb potential have allow
one to achieve two main results by using methods from
tistical mechanics of classical fluids. First, the exact anal
cal expression for the free energy of these systems has
derived in the low-density regime up to orderr5/2 @3,4#
~wherer is a generic notation for the densities!. In the latter
references exchange effects were treated perturbatively.
ond, a more general formalism@1#, which takes quantum
statistics systematically into account and where correlati
can be studied directly in position space, has been use
exhibit the exponents of algebraic decays for position co
lations between quantum charges at large distances@5#. This
PRE 581063-651X/98/58~5!/5268~25!/$15.00
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nonexponential screening, which is contrary to common
lief, has been extensively discussed in Refs.@1,5–7#.

In the present series of papers~referred to as papers I, II
and III in the following! we give technical details of the
derivation of results announced elsewhere. The exact co
cients of the algebraic falloff’s of the particle-particle
particle-charge, and charge-charge correlations are derive
the low-density limit first in the caseB050 @8#. This calcu-
lation settles the existence of algebraic screening. Moreo
all previous results are revisited in the presence of a unifo
magnetic fieldB0 @9#. Paper I investigates how the gener
formalism of Ref.@1# is modified by the presence ofB0 and
the new exponents of the algebraic tails of correlations
given. Since the presence of the magnetic field only ren
malizes a generalized fugacity in our formalism, low-dens
expansions can be devised following the same sche
whetherB050 or B0Þ0. This is done in Paper II for the
exact low-density free energy.~The method is different from
that of Ref.@4# and allows one to retrieve the same results
the absence ofB0 .) In Paper III the low-density coefficient
of the algebraic decays of correlations are derived in
presence as well as in the absence ofB0 . We also point out
that, whenB0Þ0, the exact analytical coefficient of the lead
ing algebraic tail for a one-component plasma can be
ferred from an exact sum rule specific to the OCP.

In Paper I we argue that even in the presence ofB0 , at
finite density, monopole-monopole and monople-multipo
interactions between charges surrounded by their polar
tion cloud are exponentially screened at the classical as
5268 © 1998 The American Physical Society
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as at the quantum level~see Ref.@1#!. When B050, the
large-distance decays of correlations are controlled
‘‘squared’’ quantum fluctuations of some dipolarlike intera
tions@5#, andrag

(2)T(r )uB050;Aag /r 6 at large distancesr . On

the contrary, whenB0Þ0, the invariance under rotations
broken in one space direction so that quadrupole-quadru
interactions partially survive after statistical averaging a
rag

(2)T(r )uB0Þ0;Dag( r̂ )/r 5 when r goes to infinity (r̂
[r /ur u). ~In the absence of rotational invariance, the harm
nicity of the Coulomb potential cannot reduce the me
value of quadrupole-quadrupole interactions to short-ran
contributions.!

In the absence ofB0 , at any density, the particle-charg
and charge-charge correlations,(gegrag

(2)T(r )uB050 and

(a,geaegrag
(2)T(r )uB050 , fall off as Ba /r 8 andC/r 10, respec-

tively, because of the rotational invariance of the probl
combined with the harmonicity of the Coulomb potential a
some interplay with the partially exponential screening c
ated by other quantum charges~see Ref.@5#!. On the con-
trary, in the presence ofB0 , at finite density, the Fourie
transforms of correlations involve nonanalytic terms wh
arise from the breaking of rotational invariance in one sp
direction and which are not canceled by the harmonicity
the Coulomb potential or by its Debye screening; then
interplay with partially exponential screening does not br
any cascade of inverse power laws for the leading algeb
tails at any density. Even when charges are summed ove
correlations decay as 1/r 5.

Algebraic screening at large distances is compatible w
integral constraints enforced by both internal and perfect
ternal screening, which must also be satisfied in any~classi-
cal or quantum! regime. Internal screening refers to the fa
that the system, formed by a charge of the medium and
polarization cloud, carries neither any net charge nor any
dipole ~see Sec. V B of Ref.@10#!, namely,

E dr(
a

eaSag~r !50 ~1!

and

E dr r (
a

eaSag~r !50. ~2!

In Eq. ~2! Sag(r ) is the structure factor, Sag(r )

[rada,gd(r )1rag
(2)T(r ), whered(r ) is the Dirac distribution

andda,g is the Kronecker symbol. Perfect external screen
means that the total charge induced in the plasma by
external distribution of chargedq(r ) exactly compensate
the total charge*dr dq(r ) in its vicinity. In Fourier space,
the property reads

(
g

egrg
ind~k50!52dq~k50!. ~3!

The present paper is organized as follows. The system
defined in Sec. II. In Sec. III we sketch the derivation of t
general formalism in the presence ofB0 . We recall that, in
any representation of many-body states by tensorial prod
of one-particle states, quantum statistics can be describe
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terms of cyclic permutations; the general formula for t
pressure is checked in the solvable case of a gas of inde
dent charges submitted toB0 ~Sec. III A!. For the quantum
Gibbs factor in position space we introduce the Feynm
Kac-Itô formula, whereB0 appears only in a phase facto
~Sec. III B!. The quantum gas of point particles proves to
equivalent to a fluid of ‘‘loops’’ with random shapes th
obey classical dynamics and Maxwell-Boltzmann statist
and interact via some two-body potential that behaves asr
at large distances~Sec. III C!. Thus, generalized Mayer dia
grams may be used. The exact resummation scheme req
by Coulomb divergencies at large distances is summed u
Sec. IV. The integrable resummed bonds are listed~Sec.
IV A !. Those corresponding to monopole-monopole a
monopole-multipole loop interactions fall off exponential
over a length scale which tends to the classical Debye va
in regimes where exchange effects become negligible.
third one, which describes quantum bound or diffusi
states, also involves multipole-multipole loop interactio
which generate tails that decay at least as 1/r 3. A useful
diagrammatic representation of the loop density is exhibit
it is equal to the loop fugacity times a function which aris
from interactions and involves Mayer diagrams with weig
equal to the loop density~Sec. IV B!. This integral equation
will be useful in the derivation of low-density expansions
Paper II. In Sec. V we present a solvable model in orde
exhibit the mechanisms at stake in the presence of the m
netic field. The model consists of two quantum charges e
bedded in a classical plasma~Sec. V A!. It is handled with
use of the Feynamn-Kac-Itoˆ formula. When thermal average
are taken for the classical plasma,B0 disappears from the
quantities relative to the classical particles in agreement w
the Bohr–van Leeuwen theorem~Sec. V B!. The symmetry
properties of the covariance of the motion of quantum p
ticles in the classical plasma at finite temperature in the p
ence ofB0 are studied~Sec. V C!. These properties imply
that there exists an effective quadrupolar interaction betw
the two quantum charges. In Sec. VI the leading algeb
tails of static correlations at any density are investigated
an analysis similar to that of Ref.@5#. In Sec. VI A auxiliary
bonds are introduced in order to produce an equation` la
Dyson which involves convolutions of algebraic tails wi
functions which decay at least as 1/r 6 by construction~be-
cause their large-distance behaviors necessarily involve s
kinds of products of at least two resummed bonds!. The in-
termediate results in the discussion of Ref.@5# that are in-
duced by the invariance under inversion are unchanged~Sec.
VI B !, whereas the analyticity of some contributions that
enforced by rotational invariance arguments disappears w
B0 is switched on~Sec. VI C!. The latter nonanalytic terms
are canceled again when the rotational invariance is rest
by an integration of the correlation over the angle betwe
B0 and the relative position of the two particles consider
The study of the leading and subleading behaviors of d
grams is performed in Sec. VII. The algebraic tails befo
integration over loop shapes have fixed parities under~sepa-
rate or simultaneous! inversion of loop shapes and their e
ponents depend on these parities~Sec. VII A!. Decays of
various kinds of diagrams that fall off at least as 1/r 6 even
before loop-shape integration are discussed in Sec. VI
Intermediate results are investigated in Appendix A. In S
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VII C this study allows one to determine tails of convol
tions introduced in Sec. VI A. This survey allows one
derive the leading and subleading algebraic tails of vari
correlations in Sec. VIII and to check that basic screen
rules are satisfied. In Sec. VIII A, we reorganize diagrams
order to use the fact that the ‘‘Debye’’ effective monopo
monopole interaction satisfies both the internal and per
external screening. This allows one to exhibit all algebr
tails of rag

(2)T(r ), (gegrag
(2)T(r ), and (a,geaegrag

(2)T(r ). Si-
multaneously, in Sec. VIII B, we select the diagrams th
contribute to the leading asymptotic behaviors which will
calculated at low density in Paper III. In Sec. VIII C, w
show that the charge induced by either an internal charg
an infinitesimal external charge is exactly opposite to it a
that the density of the induced polarization cloud decays w
the same inverse power law as the particle-charge correla
for particles in the plasma. The diagrammatic structure of
leading tail of the induced charge density is also given. A
pendixes B and C contain errata for Ref.@5#.

II. DEFINITION OF THE SYSTEM

In the present series of papers we consider a multicom
nent plasma made ofns species with indexa. Each species
is characterized by its massma , its spin\Sa , its chargeea ,
and its magnetic momentumma5gamBaSa . mBa
5ea\/2mac is the Bohr magneton andga is the Lande´ fac-
tor. The squared spin\2Sa

2 takes the values\2Sa(Sa11),
while its component along thez axis, \@Sa#z , is equal to
\Ma , with Ma52Sa ,2Sa11, . . . ,Sa . The dynamical
variables of a particle with indexi are its positionr i , with
conjugate momentumpi5(\/ i )“ r i

, and its spin\Si . (“ r i

denotes the gradient with respect to the positionr i and i is
the purely imaginary complex number.! In the presence of a
uniform magnetic fieldB0 , we write the Hamiltonian of the
system in the nonrelativistic limit as

H $Na%~B0!5(
i

1

2ma i

S pi2
ea i

2c
B0`r i D 2

2(
i

ga i
mBa i

Si•B01
1

2(iÞ j
ea i

ea j
vC~r i2r j !,

~4!

wherec is the light velocity,` denotes the outer produc
and vc is defined in Sec. I.H $Na%(B0) has the following
important property. It is the sum of two contributions: o
involves only position variables and the other one depe
only on spin variables.

The sum of the first two terms in Eq.~4! is the Pauli
Hamiltonian for an ideal gas. At thermal equilibrium chara
terized by a set of densities$ra%a51, . . . ,ns

and the inverse

temperatureb51/kBT, wherekB is the Boltzmann constan
andT is the temperature, the corresponding system is st
with Boltzmann statistics. Its thermodynamics involves t
two dimensionless parametersuCa5bmBaB0 and uSa
5(ga/2)bmBaB0 . These parameters are equal tob/2 times
the cyclotronic energy of orbital motion,\vCa , and the Lar-
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mor energy of spin precession,\vLa , respectively~with
vCa5eaB0 /mac andvLa5gavCa/2).

In the presence of Coulomb interaction, the quantum s
tem is stable only if quantum statistics is taken into acco
and if all negative and/or positive charges are fermions@11#.
The results about the stability of matter in a uniform ma
netic field are summarized in Ref.@12#. They deal with the
system made of moving electrons and nuclei lying at fix
locations. If the electron spin-field interaction is not i
cluded, all proofs of the stability of matter hold with con
stants unchanged by the substitution ofpi by pi
2(ea i

/c)A(r i), whereA is the potential vector. When th
spin is taken into account, the contribution from the Zeem
energy2( imi•B0 , which is not bounded below for any ar
bitrary value ofuB0u, is compensated by the self-energy
the magnetic fieldB0 only if Za* 2 and a* are sufficiently
small @13#. Ze is the nuclear charge anda* is the fine struc-
ture constant.~Indeed,Za* 2 must be small enough to avoi
the collapse of an atom, anda* must be small enough fo
the repulsion between nuclei to prevent the collapse o
macroscopic number of nuclei.!

The stability also requires that the local neutrality relati

(
a

eara~r !50 ~5!

might be realized in the bulk. Moreover, even in the prese
of B0 , an infinitesimal external charge must be perfec
screened. In the OCP model, the response function does
isfy the corresponding sum rule†See~5.64! in Ref. @10#‡.

III. GENERAL LOOP FORMALISM

In this section we recall the general formalism of Ref.@1#
and we stress the changes that arise in the presence
uniform magnetic field. This formalism is valid for an
quantum system with two-body interaction and quantum s
tistics.

Let us consider the quantum grand partition function
the system at the inverse temperatureb, when a chemical
potentialma is associated with each speciesa,

J~b,$ma%,B0!5 (
$Na%a51, . . . ,ns

TrS e2b[H$Na%~B0!2(
a

maNa] D .
~6!

In Eq. ~6! the numberNa of particles of speciesa runs from
0 to `. The trace Tr is calculated over a basis of states t
are symmetric~antisymmetric! under permutations of par
ticles of each speciesa according to the bosonic~fermionic!
nature of the speciesa. Moreover, we assume that the the
modynamic limit exists and we consider states in which e
particle position may occupy an infinite three-dimension
space. The neutrality relation~5! implies a degeneracy o
chemical potentialsma @11#; in the thermodynamic limit
physical quantities depend only onns21 independent
chemical potentials.
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A. Quantum statistics and cyclic permutations

In any basis made of tensorial products of one-part
states, the trace Tr, which is a sum over adequa
symmetrized/antisymmetrized many-particle states, app
as a sum over permutationsp and this sum can be reduced
a sum over cyclic permutations. Indeed, everyp can be writ-
ten as a composition of permutationspa , each of which
involves only one speciesa of particles, and everypa itself
can be decomposed uniquely as a composition of cyc
Thus a permutationp determines a sequence$na,p%p51, . . . ,̀

a51, . . . ,ns

wherena,p is the number of cycles involvingp particles of
speciesa in the cyclic decomposition ofpa . The total num-
ber of particles of speciesa can be written asNa
5(ppna,p . The decomposition into cycles and the inva
ance of the Hamiltonian under permutations of particles l
to the expression~A7! of Ref. @1# for J. The point is that in
Eq. ~A7! the summation may be performed over cycles fro
the start and theNa’s disappear.

The Hamiltonian~4! does not mix position and spin var
ables. Therefore, by using the representation of the trac
the particular basisu$r i ,Mi%&[ ^ i@ ur i. ^ uMi&] ~where ^

denotes a tensorial product!, the contributions from the posi
tion and spin parts of the Hamiltonian factorize, as in E
~A8! of Ref. @1#. @We notice that in Eq.~A8! a ) l 51

p is
missing in front of the spinorial density-matrix elemen#
Moreover, since the Zeeman term of the Hamiltonian is
agonal in the basiŝ i uMi&, this factorization implies that the
only configurations of spin states that give nonvanish
contributions are those in which all particles of speciesa
involved in the same cycle are in the same spin stateMa .

Eventually, a notion of loop can be associated with ea
cyclic permutation of positions as follows. When the sp
configurations are summed over independently from the
sition configurations,J is given by Eq.~3.1! of Ref. @1# with
the following change: for each cycle withp particles of spe-
ciesa, the spin degeneracy factor 2Sa11 is replaced by

(
Ma52Sa

Sa

~exp@bgamBaMaB0# !p

5sinh~@2Sa11#puSa!/sinh~puSa!.

The result is

J5 (
$na,p%

p51, . . . ,̀

a51, . . . ,ns

)
na,pÞ0

1

na,p!

3S ha
p21

p

sinh~@2Sa11#puSa!

sinh~puSa!
epbmaD na,p

3E )
i

dr i^$rp~ i !%ue2bH$na,p%~B0!u$r i%&, ~7!

where u$r i%&[ ^ i ur i& and p is a particular composition o
permutationspa corresponding to the sequence$na,p% and i
ranges from 1 to(a(ppna,p . ha[(21)2Sa is equal to 1 for
bosons and to21 for fermions. It arises from the signatur
of the permutationpa ~which is equal toha to the power
Na2(p51

Na na,p). The symmetry factor 1/p comes from the
arbitrariness in the choice of the particle that is labeled w
e
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number 1 among thep particles involved in the cycle
@exp(bma)#p is the dimensionless fugacity associated withp
particles. The loop denoted byL* is the set of degrees o
freedom (a,p,$x1 , . . . ,xp%), where the positions are labele
according to the order of their transformation in the cor
sponding cyclic permutation, i.e.,pa(xi)5xi 11 , with the
convention xp11[x1 . With the notation *dL* •••
[(a51

ns (p51
` *) l 51

p dxl•••, the summation over cycles ca
be written as a sum over loops, with

(
$na,p%

p51, . . . ,̀

a51, . . . ,ns

)
na,pÞ0

1

na,p! E )
i

dr i•••

5 (
N50

`
1

N! E )
n51

N

dLn* •••. ~8!

If the spin stateMa is kept as an extra internal degree
freedom of the loop, thenL* is replaced by L̃*
5(a,Ma ,p,$x1 , . . . ,xp%). The identity~8! is still valid with
na,p,Ma

in place ofna,p , while in Eq. ~7! the sum over the

values Ma of @S#z , sinh(@2Sa11#puSa)/sinh(puSa), is re-
placed by a single term (exp@bgamBaMaB0#)

p. The latter rep-
resentation is the most adequate one for the following ca

We can check that the present formalism allows us
retrieve the pressure of an ideal gas with quantum statis
in a uniform magnetic fieldB0 . The grand partition function
of the latter system may be written as

J05 (
N50

`
1

N! E F )
n51

N

dL̃n* G )
n51

N

z0~L̃n* !

5expF E dL̃* z0~L̃* !G , ~9!

with *dL̃* •••[(a51
ns (Ma52Sa

Sa (p51
` *) l 51

p dxl••• and the

‘‘fugacity’’

z0~L̃* ![
h a

p21

p
~eb[ma1gamBaB0Ma] !p

3)
l 51

p

^x1ue2bhB0 ,a
~0!

uxp&

3^xpue2bhB0 ,a
~0!

uxp21&•••^x2ue2bhB0 ,a
~0!

ux1&. ~10!

In Eq. ~10! the chemical potentialma is shifted by the Zee-
man energygamBaB0Ma , which removes the degenerac
between the spin states.hB0 ,a

(0) is the one-body Hamiltonian

of a particle without spin in the magnetic field,

hB0 ,a
~0! 51/~2ma!@p2~ea/2c!B0`x#2.

After integration over the positionsxl , the product of matrix
elements in Eq.~10! gives a factor Tr(exp@2pbhB0 ,a

(0) #). Let

us choose the magnetic field along thez axis, B05B0ez ,
whereez is a unit vector. The Landau energy levels ofhB0 ,a

(0)

are
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«a
~0!~ @k#z ,n!5

\2@k#z
2

2ma
1\vCaS n1

1

2D , ~11!

where@k#z is the component ofk along thez axis andn is a
positive integer,n50,1,2, . . . . For @k#z and n fixed, the
degeneracy factor in a box with volumeL is L1/2/(2p)
timesL2/3eaB0/2p\c @14# and

lim
L→`

1

L
Tr~e2pbhB0 ,a

~0!
!5

eaB0

2p\cE d@k#z

2p (
n50

`

@e2b«a
~0!

~ [k] z ,n!#p.

~12!

The summation overp can be performed according to th
identity ln(12x)52(p51

` xp/p ~In principle, the latter identity
is valid only when21<x,1, but it can be used for anyx by
analytical continuation.! Finally, we retrieve the pressur
P(0) of a gas of independent quantum charges in a unifo
magnetic field@14#,

bP~0!5 lim
L→`

1

L
lnJ0~b,$ma%,B0 ;L!

5 (
a51

ns

(
Ma52Sa

Sa eaB0

2p\cE d@k#z

2p (
n50

`

~2ha!

3 ln@12haeb$ma1gamBaB0Ma2«a
~0!

~ [k] z ,n!%#.

~13!

B. Feynman-Kac-Itô path integral

The representation of the quantum Gibbs factor in ter
of noncommuting operators is replaced in Eq.~7! by a rep-
resentation in terms of scalar functional integrals, by us
the Feynman-Kac formula. In the Feynman-Kac path integ
the presence ofB0 only introduces an extra phase fact
exp@(iea /\c)*FKacA•dv# wheredv is a line element of the
pathv @15#. *FKacA•dv is defined as the limit of either th
discrete sum of terms (vn2vn21)•A(@vn1vn21#/2) or the
sum of (vn2vn21)•@A(vn)1A(vn21)#/2 when the dis-
crete dimensionless ‘‘time’’ spacingDt betweenvn and
vn21 goes to zero with the scaling law of a Brownian wa

@vn2vn21#m@vn2vn21#n ;
Dt→0

dm,nla
2Dt. ~14!

The Schro¨dinger equation may be derived by writing th
difference between the wave functions at timest and t1Dt
infinitesimally close together and by using the fact that
quantum Gibbs factor for one particle is the kernel of t
integral representation of the evolution of the wave funct
in imaginary time. The use of the discrete sums defin
above ensures that the latter Schro¨dinger equation coincide
with that obtained from the usual quantization of the clas
cal Hamiltonian.

In fact, from the mathematical point of view, the Itoˆ inte-
gral * ItôA•dv must be used in order to properly define t
integral *A•dv in functionals involving averages ove
Brownian paths@16,17#. The Itô integral corresponds to th
discrete sum of terms (vn2vn21)•A(vn21) where (vn
s

g
al

e

n
d

i-

2vn21) points towards the future andA(vn21) only de-
pends on the past. Its relation with the Feynman-Kac integ
reads

E
FKac

A•dv5E
Itô

A•dv1
1

2
la

2E
0

1

ds“•A„v~s!…,

~15!

wheres is a dimensionless abscissa (ds[2 iDt).
If v is a closed path,*FKacA•dv is gauge invariant. In-

deed, in a gauge transformationA→A1“ f , and U→U
2] f /]t, where U is the electromagnetic scalar potentia
*0

1dsU(s)1*FKacA•dv is just translated byf „v(s51)…
2 f „v(s50)…, as it should be. This transformation proper
is ensured by the Itoˆ lemma for a functionf „v(s),s…,

E
Itô
“ f „v~s!,s…•dv1

1

2
la

2E
0

1

dsD f „v~s!,s…

1E
0

1

ds
] f „v~s!,s…

]s

5 f „v~s51!,s51…2 f „v~s50!,s50…. ~16!

If B0 is uniform, one can choose the Coulomb gauge wh
“•A50. Then, according to Eq.~15!, *FKacA•dv5
* ItôA•dv, and the subscript Itoˆ will be omitted.

In the following, we choose the Coulomb gauge which
isotropic in the plane perpendicular toB0 , namely, A(r )
5(1/2)B0`r . In this gauge, the Feynman-Kac-Itoˆ formula
reads

^$rp~ i !%ue2bH$na,p%u$r i%&

5)
i F 1

~2pla i

2 !3/2
e2~rp~ i !2r i !

2/2la i

2 G
3E F)

i
D~ji !GexpF(

i
~ iea i

/2\c!

3B0•E
0

1

vi ,p~ i !~s!`dvi ,p~ i !G
3expF2b~1/2!( iÞ jea i

ea j

3E
0

1

dsvC„vi ,p~ i !~s! 2vj ,p~ j !~s!…G . ~17!

vi ,p( i )(s) is a Brownian path starting fromr i at s50 and
ending atrp( i ) at s51. It can be decomposed into a unifor
motion along a straight line linkingr i to rp( i ) plus a random
fluctuation,

vi ,p~ i !~s!5~12s! r i1s rp~ i !1la i
ji~s!, ~18!

wherela i
is the thermal de Broglie wavelength defined

la i
5(b\2/ma i

)1/2, and ji(s) is a dimensionless Brownian

bridge which vanishes whens50 and s51. The measure
D(j), which contains the exponential of the kinetic part
the Euclidean action, is normalized,*D(j)51, and has a
Gaussian covariance, which is independent from the spe
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covmn~s,s8;B050![E D~j!@j~s!#m@j~s8!#n

5dm,ninf~s,s8!@12sup~s,s8!#,

~19!

where inf(s,s8)@sup(s,s8)# denotes the infimum~supremum!
of s ands8.

C. Equivalence with a Maxwell-Boltzman gas of classical loops

As a consequence of the two previous sections, and a
the absence of the magnetic field, a particle that is not
changed under any cyclic permutation is associated wit
closed pathv1,1, whereasp particles that are involved in a
given cyclic permutation are described byp open Brownian
paths vl ,l 11 , with l 51, . . . ,p. (vl ,l 11 links xl to xl 11
with the conventionxp115x1 .) These open paths form
closed curveV which is parametrized by an abscissat rang-
ing from 0 top,

V~t!5(
l 51

p

dP~t!,l 21vl ,l 11@t2~ l 21!#. ~20!

In Eq. ~20! P(t) denotes the integral part oft. For instance,
V(t50)[v1,2(s50)5x1 , and we setV(t5p)[vp,1(s
51)5x1 . In the following, we callR[x1 the ‘‘position’’ of
the loop andX(t)[V(t)2R its ‘‘shape.’’ A loopL is de-
scribed by its position and its internal degrees of freed
(a,p,X) ~when the spin configurations are summed over!. In
the following, p will be called the exchange degeneracy
the loop. We define the integration measure*dL
5*dR*D(X) with

D~X![)
l 52

p

dxl )
l 51

p

D~jl !. ~21!

@We notice thatla , which is involved in the definition ofX,
does not appear in the measureD(X).] With these notations
according to Eqs.~7! and ~17!, the grand partition function
~6! of a system of quantum particles with quantum statis
and interacting via a two-body potential and with a unifo
external magnetic fieldB0 according to Eq.~4! can be writ-
ten as the grand partition function of a system of class
loops with Maxwell-Boltzmann~MB! statistics and interact
ing via some two-body potential, as in Eq.~3.11! of Ref. @1#,

J5J loop

5 (
N5O

`
1

N! E )
n51

N

@z~Ln!dLn#e2b~1/2!(
iÞ j

ea i
ea j

v~Li ,Lj !.

~22!

In Eq. ~22! we use the convention that, ifN50, there is no
Ln in the corresponding term ofJ loop and the latter term is
merely equal to 1. The potential between loops can be
pressed as
in
x-
a

f

s

l

x-

v~Li ,Lj !5E
0

pi
dtE

0

pj
dt8 d„@t2P~t!#2@t82P~t8!#…

3vC„Vi~t!2Vj~t8!…. ~23!

The only difference with the caseB050 is an extra phase
factor which has been incorporated in the fugacityz(L). The
phase factor involves *0

pV(t)`dV[*0
pdt V(t)

`@dV(t)/dt#, but the latter reduces to*0
pX(t)`dX. In-

deed, whenV is changed intoV1a, *0
pV(t)`dV is trans-

lated by a`*0
pdV(t)5a`( l 51

p @(xl 112xl)1la*0
1djl(s)#

which vanishes becausexp115x1 and *0
1djl(s)50, as a

consequence of Itoˆ lemma ~16! applied to the function
f „v(s),s…5v(s)•e wheree is a unit vector with any given
orientation. With the same notations as in Ref.@1#,

z~L!5za,p* e~ iea/2\c!B0• E0
pX~t!`dX~t!e2bEb,a

int
~X!, ~24!

whereEb,a
int is an internal energy which does not depend

B0 ,

Eb,a
int ~X!5

1

b2la
2 (

l 51

p

~xl 112xl !
21

1

2
ea

2E
0

p

dtE
0

p

dt8

3~12dP~t!,P~t8!!d„@t2P~t!#2@t82P~t8!#…

3vC„V~t!2V~t8!… ~25!

and

za,p* 5
ha

p21

p

sinh~@2Sa11#puSa!

sinh~puSa! S ebma

~2pla
2 !3/2D p

. ~26!

In Eq. ~26! ha
p21 is a memory of quantum statistics and th

symmetry factorp comes from the arbitrary choice for th
loop positionR among thep particle positions involved in
the loop. The paramagnetic contribution sinh(@2Sa
11#puSa)/sinh(puSa) reduces to the spin degeneracy 2Sa

11 when the magnetic field vanishes, whileebma/(2pla
2)3/2

is the usual dimensioned fugacity. We notice that the Gau
ian part arising fromEb,a

int (X) in Eq. ~24! together with the
phase factor generated by the coupling withB0 could be
absorbed in the measureD(X) so thatEb,a

int (X) would reduce
to the Coulomb self-energy. However, we do not choose
decomposition, because we want to keep an explicit trac
the positions of the various particles involved in a loop
order to study the correlations between the positions of qu
tum particles in the following.

The important properties ofz(L) are the following.z(L)
depends only on the shapeX of the loop, and not on its
position R, z(L)[za,p(X). It is unchanged under a gaug
transformation because the phase factor due to the pres
of B0 involves*A•dv calculated on a closed curve.@See the
comment just before Eq.~16!.# Moreover,za,p(X) is invari-
ant under the inversionX→2X and under the rotation ofX
aroundB0 .

The gas of loops obeys Maxwell-Boltzmann statistics
that usual techniques from classical statistical mechanic
fluids can be applied. This was done by Ginibre in order
prove the convergence of low-density expansions of therm
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dynamic functions for some integrable potentials@18#. The
methods were different from those used in the following.
the present paper, as in Ref.@1#, we take advantage of th
fact that the grand partition function~22! is a functional of
the loop fugacity in order to introduce Mayer diagrams.
deed, since the loop density and the correlations between
loops can be expressed as functional derivatives of the g
partition function, the rules for the Mayer diagrams are
same as for point objects. In these diagrams there is at m
one Mayer bondf [exp@2bv#21 between two points and
point, which represents the variables of one loop, is ass
ated with an integration measuredL[*dr*D(X). By defi-
nition, the ‘‘internal’’ points are integrated over, while th
‘‘root’’ points are not.

We will use a diagrammatic representation of the lo
density that was not introduced in Ref.@1#, and that has no
be used in the literature for fluids of point particles, at le
to our knowledge. This representation, which may be in
preted as an integral equation for the loop density, reads

r~La!5z~La!expH (
G*

1

SG*
E )

n51

N

@dLnr~Ln!#F) f G
G*
J .

~27!

Equation~27! may be derived from the usual fugacity expa
sion of the density where the density appears as the su
all unlabeled topologically different connected diagra
with one root point La and N internal points (N
51, . . . ,̀ ). In Eq. ~27! the sum runs over all diagramsG* ,
which satisfy the previous definition with two addition
constraints: they contain no articulation point and they
main as a single piece when all bonds involving the r
point are cut. The last property must be satisfied because
expansion of the exponential of the sum of such diagra
generates all diagrams and, in particular, all of those tha
not remain as a single piece when the root point is remov
Moreover, an articulation point is such that, if the bonds w
which it is involved are cut, then the diagram is split into tw
pieces and at least one of these pieces will no longer
linked to the root point. The absence of the articulation po
comes from the fact that each internal pointLn of the dia-
gram is weighted by the densityr(Ln) and not by the fugac-
ity z(Ln). SG* is the symmetry factor of a given graphG* ,
namely, the number of permutations of the internal pointsLn
that do not change the integrand@) f #G* , which is the prod-
uct of all Mayer bonds inG* . Moreover, it is convenient to
write the truncated two-loop distribution functio
r (2)T(La ,Lb) as r (2)T(La ,Lb)5r(La)r(Lb)h(La ,Lb),
where the loop Ursell functionh(La ,Lb) can be simply ex-
pressed as

h~La ,Lb!5(
G

1

SG
E )

n51

N

@dLnr~Ln!#F) f G
G

. ~28!

In Eq. ~28! the sum runs over all unlabeled topologica
different connected diagramsG with two root pointsLa and
Lb andN internal points (N50, . . . ,̀ ) without any articu-
lation point. The contribution forN50 reduces tof (La ,Lb).

The quantum particle densities andn-body distribution
functions are derived from the loop distribution functions
-
he
nd
e
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i-

t
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-
t
he
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e
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integration over some internal degrees of freedom of
loops. The formulas are the same as in Eqs.~4.3!, ~4.6!, and
~4.7! of @1# and they will be recalled when they are used
the following.

As shown below, the Mayer graphs for the loop syste
are very useful to investigate the large-distance behavio
correlations between quantum particles directly in posit
space or to devise systematic low-density expansions
thermodynamic quantities or position correlations in terms
the densities of quantum particles.

IV. SPECIAL CASE OF COULOMB INTERACTION

In the case of the long-ranged Coulomb interaction,
Mayer graphs diverge and graphs must be collected in o
to get new graphs with integrable resummed bonds. In
section we only summarize the steps of the exact resum
tion process, because it is a straightforward generalizatio
the procedure detailed in Ref.@1# in the caseB050. We first
address the resummation scheme for the loop-density ex
sion of the loop Ursell function, because the topologic
principles are simpler than for the loop-fugacity expansion
the loop density which will be discussed in Sec. IV B.

A. Exact resummation of Coulomb divergencies
for the loop Ursell function

The interaction between two loops may be decompo
into the sum of three kinds of contributions: monopo
monopole and multipole-monopole interactions, which a
identical to their electrostatic analogs, and a multipo
multipole interaction, which cannot be interpreted as an e
trostatic energy, because the Feynman-Kac formula invo
only interactions between loop line elements with the sa
abscissa~up to an integer!. Auxiliary Mayer bonds are intro-
duced according to this decomposition, and the auxiliary d
grams are collected inside equivalence classes in orde
sum convolution chains of auxiliary bonds where the int
mediate points are so-called Coulomb points. The definit
of a Coulomb point is the following: it appears in the aux
iary interaction bonds only through the monopole of the c
responding loop, namely, through its total charge.

The presence of the magnetic field does not modify
resummation process, because the latter involves only
large-distance behavior of the loop interaction,2bvC(uRi
2Rj u), which does not depend on the shape of the loo
The whole Sec. V of Ref.@1# is unchanged, except that th
value of *D(X)r(X) now depends onB0 . As a result, the
Ursell function can be expressed as a sum over Mayer
gramsP,

h~La ,Lb!5(
P

1

SP
E )

m51

M

@dPmr~Pm!#F) F G
P

.

~29!

Equation~29! is analogous to Eq.~28! with the only differ-
ence that, in order to avoid double counting, there exist th
kinds of resummed bonds with a related exclude
convolution rule when the intermediate point is involve
only through its total charge.~See next paragraph.!
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The resummed bondsFcc and Fcm corresponding to the
monopole-monopole, i.e., charge-charge, and monop
multipole, i.e., charge-multipole, interactions decay exp
nentially. More precisely

Fcc~Li ,Lj !52bpiea i
pjea j

f~ uRi2Rj u! ~30!

while

Fmc~Li ,Lj !52bpiea i
pjea jF E0

pi dt

pi
f„uVi~t!2Rj u…

2f~ uRi2Rj u!G ~31!

and, in a similar way,

Fcm~Li ,Lj !52bpiea i
pjea jF E0

pj dt

pj
f„uRi2Vj~t!u…

2f~ uRi2Rj u!G . ~32!

In these equations the potential is of Debye form,

f~R!5
exp~2kR!

R
. ~33!

The expression ofk is the same as in Eq.~5.14! of Ref. @1#,

k5F4pb (
a51

ns

ea
2 (

p51

`

p2E D~X!ra,p~X!G1/2

. ~34!

In the quantum weak coupling regime for fermions at hi
density, it tends to its value in the random phase approxi
tion, whereas, in the classical limit where exchange effe
become negligible at low density, it coincides with the D
bye inverse lengthkD

21 with kD
2 54pb(aea

2ra . The ex-
cluded convolution rule is the following: there can be
convolutionFcc* Fcc, Fcc* Fcm, or Fmc* Fcm, where* de-
notes a convolution for the loop position variableR and an
integration over the internal degrees of freedom of the in
mediate loop.

On the contrary, the dressed bond, which contains
multipole-multipole interactions and the short-ranged par
the Mayer bondf , decays algebraically at large distances
reads

FR5e2bea i
ea j

felect1W212Fcc2Fcm2Fmc, ~35!

with

W~Li ,Lj !52bea i
ea j

E
0

pi
dtE

0

pj
dt8$d„@t2P~t!#

2@t82P~t8!#…21%vC„Vi~t!2Vj~t8!…

~36!

and
e-
-

a-
ts
-

r-

e
f
t

felect~Li ,Lj !5E
0

pi
dtE

0

pj
dt8 f„Vi~t!2Vj~t8!….

~37!

When the distanceuRi2Rj u between loops becomes infinite
the leading asymptotic term inW decays as 1/uRi2Rj u3. The
algebraic tails of the bondFR are generated by the expansio
of exp(W)21. We notice thatFR depends on the density onl
through the inverse lengthk.

B. Resummed diagrammatic representation of the loop density

Before using Eq.~27!, we must study the representatio
of the loop densityr(L) in terms of diagrams with weigh
z(L). Resummations are the same as in Appendix B of R
@1#. Moreover, a generalization of Appendix C shows th
each resummed diagram is conditionally integrable, if
integrations over the loop shapes and over the orientation
the relative positions of loops are performed before the in
grations over the distances between loops. More precis
since articulation points exist in diagrams with weightsz(L),
a pointPj may be linked to only one pointP0 in a resummed
diagram and the bond linkingP0 to Pj may decay algebra
ically. As in Eqs.~C3! and~C4! of Ref. @1#, once the invari-
ance of both the integration measure and the integrand u
the inversionX j→2X j has been taken into account, the on
terms at the border of integrability come from the caseP0
5La ~whereLa is the root point!. These terms are propor
tional to

E D~X j !G2~X j !@X j~t8!#m
2 ]mmS 1

r D , ~38!

where the functionG2(X j ) is invariant under rotations
around the direction ofB0 . In Eq. ~38! the summation over
the repeated space indexm51,2,3 is implicit and r
5Va(t)2Rj . Because of the invariance ofD(X j )G2(X j )
under rotations in the plane perpendicular toB0 , Eq. ~38!
can be written as

$A~t8!D1@B~t8!2A~t8!#]zz%S 1

r D , ~39!

with A(t8)5*D(X j )G2(X j )@X j (t8)#x
2 and B(t8)

5*D(X j )G2(X j )@X j (t8)#z
2 . However, after integration ove

the unit vectorr̂5r /r ,

E dr̂ ]zzS 1

r D5
1

3
DS 1

r D52
4p

3
d~r !, ~40!

whered(r ) is the Dirac distribution. Finally, Eq.~38! is short
ranged after integration overr̂ .

Since the resummed diagrams in the loop-fugacity exp
sion ofr(L) are finite, we can use the diagrammatic relati
~27! in which the weight of each loop is equal to the loo
density. This relation has not been studied in Ref.@1#. Again,
the Coulomb divergencies of the diagramsG* can be re-
summed by a procedure analogous to that performed for
Ursell function. The reason is that the diagramsG* do not
contain any articulation point, except for the diagram w
only one internal point~in which the root pointLa is itself an



t
nc

n

in
n
ci

in

y

to

b

o
f
e

cu
ro
e

oi

s
l

n.

rst

tion
the
rm

an-
eir

her,
as

in a
n
e
ults.
r-

r-

5276 PRE 58F. CORNU
articulation point!. The special role of the single root poin
introduces two differences with the case of the Ursell fu
tion, as follows. Let us definef cc ( f mc) asFcc (Fmc) with
vC in place off in Eqs.~30! and~32!. First, there appears a
extra constant

1

2E dLr~L!$@ f cc1 f mc#@Fcc1Fmc#2@ f cc#2%~La ,L!

~41!

due to the resummation of ring diagrams with Coulomb
termediate points, because these diagrams disappear i
resummation process, as ring diagrams in the loop-fuga
expansion ofr(La) †see Eq.~B8! in Ref. @1#‡. The term
@ f cc#2(La ,L) must be subtracted because there is no r
with only one internal point.~Indeed, two points are linked
by at most one bondf .) Second, in the diagram with onl
one internal pointL and a bondFR(La ,L), one must sub-
tract the contributions that are Coulomb rings in order
avoid double counting, as in Eq.~B3! of Ref. @1#. The redun-
dant contribution that must be subtracted is equal to

1

2E dLr~L!$@Fcc1Fmc#22@ f cc#2%~La ,L!. ~42!

The spurious infinite contribution of@ f cc#2 disappears in the
difference between Eqs.~41! and ~42!. If we denotea the
species of the root pointLa with exchange degeneracypa
and g the species of the internal pointL, the difference
between Eqs.~41! and~42!, which will be denotedI rgT ~since
it comes from some truncated contribution of Coulom
rings!, may be written as

I rgT5
k2

8p
b~eapa!2E drE

0

pa dt

pa
(
q50

`
1

q!
@Xa~t!•“ r#

q

3S 12e2kr

r D E
0

pa dt8

pa
(

q850

`
1

q8!
@Xa~t8!•“ r#

q8S e2kr

r D ,

~43!

where the factork2 given by Eq.~34! originates from the
integration over the internal degrees of freedom ofL. The
resummed diagrams with at least two internal points are
tained by the same resummation process as in the case o
Ursell function. †We notice that the resummation for th
loop-fugacity expansion ofr(La) performed in Appendix B
of Ref. @1# is more complex because the existence of arti
lation points in the loop-fugacity diagrams leads to the int
duction of two types of weights after resummations as w
as related excluded-convolution rules in order to av
double counting.‡ The final formula forr(La) after resum-
mation reads

r~La!5z~La!exp@ I rgT~La!#

3expF(
P*

1

SP*
E )

m51

M

dPmr~Pm!F) F G
P*

G ,

~44!
-

-
the
ty

g

b-
the

-
-
ll
d

where the diagramsP* contain the root pointLa and at least
one internal point. They are built with the bond
Fcc, Fcm, Fmc, and FR and obey the same topologica
properties as the diagramsG* in Eq. ~27! with the extra
excluded-convolution rule also valid for the Ursell functio

V. A SOLVABLE MODEL

We consider two quantum chargese1 ande2 at pointsr1
andr2 embedded in a classical plasma. This model was fi
introduced by Alastuey and Martin@19# in order to exhibit
how quantum fluctuations generate algebraic tails in posi
correlations at large distances. In this section we study
generalization of this model in the presence of a unifo
magnetic fieldB0 .

A. Definition of the model

In order to define the correlation between the two qu
tum particles from the free energies associated with th
immersion in the classical gas either separately or toget
we decompose the Hamiltonian of the whole system
H5H0(C)1H(1,C)1H(2,C)1e1e2vC(r12r2) with the
following definitions. H0(C) is the Hamiltonian of the
classical plasma in a phase-space configurationC
5($yj% j 51, . . . ,N ,$pj% j 51, . . . ,N) of its N particles in the ab-
sence of the quantum charges,

H0~C!5(
j 51

N
@pj2~ej /2c!B0`yj #

2

2mj
1

1

2E drE dr 8

3vC~r2r 8!Q~r ,C!Q~r 8,C!, ~45!

whereQ(r ,C) is the microscopic charge density atr of the
classical gas in the configurationC. H( i ,C) is the Hamil-
tonian of one quantum charge with indexi 51,2 in the po-
tential created by the classical plasma in configurationC,

H~ i ,C!5
@pi2~ei /2c!B0`r i #

2

2mi
1eiE dr vC~r i2r !Q~r ,C!.

~46!

In a rigorous approach, one must first consider a system
finite volumeL and then take the thermodynamic limit. I
the following we consider a system in an infinite volum
from the beginning, because this does not change the res

As in Ref.@19#, the correlation is defined from the imme
sion free energies as

g~r1 ,r2![exp$2b@F12
~2!~r1 ,r2!2F1

~1!~r1!2F2
~1!~r2!#%21,

~47!

whereFi
(1)(r i) is the free energy associated with the imme

sion of one quantum charge with speciesi at point r i in the
classical gas

e2bFi
~1!

~r i ![
E dC^r i ue2b[H0~C!1H~ i ,C!] ur i&

E dCe2bH0~C!

~48!



er

s

f
ar

th
n

ss

d
te

ich

sity

hat

ed
r-
on-
rgy
e

PRE 58 5277QUANTUM PLASMAS WITH OR . . . . I. . . .
andF12
(2)(r1 ,r2) is the free energy associated with the imm

sion of the pair of quantum particles at positionsr1 and r2 ,

e2bF12
~2!

~r1 ,r2![
E dC^r1 ,r2ue2bH~C!ur1 ,r2&

E dCe2bH0~C!

. ~49!

In Eqs.~48! and~49! the configurations of classical particle
are integrated over withdC[) j 51

N dyjdpj /(2p\)3N. We
notice that in factH0(C) is a scalar which factorized out o
the matrix elements. In fact, since the position integrals
performed over an infinite volume,Fi

(1)(r i) is independent
from r i , Fi

(1)(r i)5Fi
(1) , while F12

(2)(r1 ,r2) only depends on
the differencer22r1 .

B. Averaging over the classical gas

In the averaging process, the mechanism underlying
Bohr–van Leeuwen theorem still operates and there is
macroscopic magnetic property associated with the cla
calparticles. Indeed, the conjugate momentumpj of a classi-
cal particle is a scalar and, by a translationpj→pj
1(ej /2c)B0`r j , the coupling withB0 disappears for the
degrees of freedom of classical particles, as follows:

E dCe2bH0~C!5F)
j 51

N
1

~2pl j
2!3/2G E F)

j
dr j G

3expF2~b/2!(
j Þ l

ejelvC~r j2r l !G . ~50!

On the contrary, the position and momentum operators
not commute for quantum particles. This property is reflec
in the path integral representation in the phase space (r ,p)
@20# by the fact that, when the paths of the variablep are
-

e

e
o
i-

o
d

integrated over first, there appears a phase factor wh
couples the paths of the variabler with B0 . For a closed path
vi ,i5r i1l ij(s), the phase factor involves* Itôvi ,i`dvi ,i
5l i

2* Itôji`dji , because* Itôdj50 according to Itoˆ lemma
~16!. Then the generalization of Eq.~17! in the presence of
an external potential allows one to write

^r i ue2bH~ i ,C!ur i&5
1

~2pl i
2!3/2E D~ji !

3expF i ~eil i
2/2\c!B0•E

Itô
ji`dji G

3e2bei(
j 51

N E
0

1

dsvC„r i1l iji ~s!2yj …. ~51!

As in the general formalism, the closed pathvi ,i may be
interpreted as a closed curve with a uniform charge den
eini(r )5ei*0

1dsd„r i1l iji(s)2r ….
In the case of the one-body quantum Gibbs factor t

appears in Eq.~48!, the use of the Feynman-Kac-Itoˆ formula
~51! introduces the electrostatic interaction of the clos
curve vi ,i with a given configuration of the classical pa
ticles. Henceforth, after averaging over the classical gas c
figurations, there appears the electrostatic free ene
Fi ,elect

(1) (ji) of the immersion of a single closed curve in th
classical gas,

e2bFi
~1!

5
1

~2pl i
2!3/2E D~ji !

3expF ~ ieil i
2/2\c!B0•E

0

1

ji~s!`dji Ge2bFi ,elect
~1!

~ji !,

~52!

with
.
in
.

e2bFi ,elect
~1!

~ji !5

E F)
j

dyj GexpF2bei(
j

ejE drni~r !vC~r2yj !2~b/2!(
j Þ l

ejelvC~yj2yl !G
E F)

j
dyj GexpF2~b/2!(

j Þ l
ejelvC~yj2yl !G . ~53!

Fi ,elect
(1) (ji) is independent from the positionr i of the closed curve because the classical gas occupies an infinite volume
On the contrary, in the case of the two-body quantum Gibbs factor involved in Eq.~49!, the pair interaction that appears

the Feynman-Kac-Itoˆ formula ~17!, namely,e1e2*0
1ds1*0

1ds2vC„r22r11l2j2(s2)2l1j1(s1)…, is not an electrostatic energy
However, it can be written as the sum of the purely electrostatic contributionEelect(r12r2 ,j1 ,j2), which couples every curve
element of one closed curve with all curve elements of the other closed curve, and a purely quantum term,

w~r12r2 ,j1 ,j2![e1e2E
0

1

ds1E
0

1

ds2@d~s12s2!21#vC„r22r11l2j2~s2!2l1j1~s1!… ~54!

(w corresponds to the quantity denoted byW in Ref. @19#!. With this decomposition, the pair free energy reads

e2bF12
~2!

~r12r2!5
1

~2pl1
2!3/2~2pl2

2!3/2E D~j1!expF ~ ie1l1
2/2\c!B0•E

0

1

j1~s!`dj1G
3E D~j2!expF ~ ie2l2

2/2\c!B0•E
0

1

j2~s!`dj2Ge2bw~r12r2 ,j1 ,j2!e2bF12,elect
~2!

~r12r2 ,j1 ,j2!, ~55!
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whereF12,elect
(2) (r12r2 ,j1 ,j2) is the free energy associated with the immersion of two closed curves interacting throug

electrostatic force. As in Ref.@19#, we introduce the effective potential corresponding to the electrostatic energy need
separate the charged filaments atr1 and r2 by an infinite distance in the classical gas,

feff~r12r2 ,j1 ,j2!5F12,elect
~2! ~r12r2 ,j1 ,j2!2F1,elect

~1! ~j1!2F2,elect
~1! ~j2!. ~56!

Subsequently, withr5r12r2 , the correlation~47! can be written as

g~r !5E DB0
~̄j1!E DB0

~̄j2!$e2b[feff1w]21%, ~57!

with

DB0
~̄ji ![

expF ~ ieil i
2/2\c!B0•E

0

1

ji~s!`dji Ge2bFi ,elect
~1!

~ji !

E D~ji !expF ~ ieil i
2/2\c!B0•E

0

1

ji~s!`dji Ge2bFi ,elect
~1!

~ji !

D~ji !. ~58!
nc
ng

r-

n

-

l t

y in
q.

e
-
the
The large-distance behavior ofg(r ) can be easily investi-
gated from Eq.~57!. Every Brownian bridgel iji has a
Gaussian weight that restricts its average extent to dista
of orderl i . Besides, by virtue of the exponential screeni
in classical Coulomb systems@21#, feff decays faster than
any inverse power law of the distancer , whereasw falls off
algebraically. More precisely, according to the Taylor fo
mula

vC@r22r11l2j2~s2!2l1j1~s1!#

5 (
n50

`

~1/n! !$@l2j2~s2!2l1j1~s1!#•“%n~1/r !,

and according to the property

E
0

1

ds1E
0

1

ds2@d~s12s2!21# f ~s1!50, ~59!

the leading algebraic tail ofw decays as 1/r 3, andw2 falls
off as 1/r 6.

Subsequently, algebraic tails appear in the large-dista
behavior ofg(r ) and are given by

E DB0
~̄j1!E DB0

~̄j2!H 2bw~r ,j1 ,j2!

1
b2

2
@w~r ,j1 ,j2!#21•••J . ~60!

After averaging$•••% in Eq. ~60! with the measureDB0
(̄j),

which is invariant under the inversionji→2ji , the slowest
nonvanishing term in Eq.~60! is the term in the Taylor de
composition ofw that contains twoj1’s and twoj2’s. This
term decays as 1/r 5, whereas, in the absence ofB0 , the
invariance under rotations makes this term proportiona
D(1/r ), which is short-ranged~see Ref.@5#!. We define the
covariance in the presence of the classical gas as

cov̄mn
a i ~s,s8![E DB0

~̄ji !@ji~s!#m@ji~s8!#n . ~61!
es

ce

o

This covariance depends on the speciesa i of the particlei
through the phase factor and the electrostatic free energ
Eq. ~58!. With this notation, the leading algebraic tail in E
~60! is

g~r ! ;
r→`

2
1

4
be1e2l1

2l2
2E

0

1

ds1E
0

1

ds2 @d~s12s2!21#

3covmn
a1 ~s1 ,s1!covrs

a2~s2 ,s2!]mnrsS 1

r D . ~62!

C. Covariance properties

In order to give a more explicit expression for th
asymptotic behavior ofg(r ), we briefly present the proper
ties of the covariance that are deduced from those of
measureDB0

(̄ji) defined in Eq.~58!. The termB0•*j`dj in

the phase factor involves only the components ofj that lie in
the plane perpendicular toB0 .

First, the phase factor is invariant under rotations ofj in
this plane. Therefore

covxx
a i ~s,s8!5covyy

a i ~s,s8!, ~63!

covxy
a i ~s,s8!52covyx

a i ~s,s8!. ~64!

Since by definitioncovxy
a i (s,s)5covyx

a i (s,s), Eq.~64! implies
that

covxy
a i ~s,s!50. ~65!

Second, the phase factor is unchanged when@j#z→2@j#z ,
and

covzx
a i~s,s8!5covxz

a i~s,s8!50, ~66!

covzy
a i~s,s8!5covyz

a i~s,s8!50. ~67!

As a result of Eq.~65! and of the latter equations

covmn
a i ~s,s!5dm,ncovmm

a i ~s,s!. ~68!
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In order to rewrite Eq.~62! with two operators analogou
to $•••% in Eq. ~39!, we use Eq.~68! and ~63!. Since

]n

~]z!nS 1

r D5~21!nn!
Pn~cosu!

r n11
, ~69!

wherePn is the Legendre polynomial of ordern andu is the
angle betweenr andB0 , we find thatg(r ) decays as

g~r ! ;
r→`

26
P4~cosu!

r 5 be1e2l1
2l2

2E
0

1

ds1E
0

1

ds2

3@d~s12s2!21#@covxx
a1~s1 ,s1!2covzz

a1~s1 ,s1!#

3@covxx
a2~s2 ,s2!2covzz

a2~s2 ,s2!#. ~70!

In conclusion, this model is solvable, and the exact algeb
tail of the correlation is given by Eq.~70!. Since
*d(cosu)Pn(cosu)50, after integration overu, g(r ) decays
as 1/r 6, according to Eq.~60!, as in the absence ofB0 . In the
limit of weak Coulomb coupling and weak dynamical effec
~at uCi5b\eiB0/2mic fixed!, the coefficient of the 1/r 5 tail
can be calculated exactly. The result will be given in Pa
III.

VI. LEADING ALGEBRAIC TAILS OF THE STATIC
CORRELATIONS AT ANY DENSITY

The scheme of the discussion is the same as in Ref.@5#,
but now the arguments about invariance under rotations m
be decomposed in arguments about either invariance u
inversion or invariance under rotations in the plane perp
dicular toB0 . The results derived in Ref.@5# and that depend
only on the invariance under inversion are still valid. Ho
ever, the invariance under rotations is broken byB0 and the
discussion about analytical properties in Fourier space
modified.

A. Scheme of the discussion

We consider two charges with speciesaa and ab . The
two-body distribution function~called correlation in the fol-
lowing! can be decomposed into two contributions accord
to the general formalism of Ref.@5#. If aa5ab , the so-called
exchange partraaaa

(2)T uexch comes from configurations wher

the positions of the particles are involved in the same cy
permutation. It is determined by integration of the loop de
sity over all its internal degrees of freedom except for
relative distance between two particles in the loop†see Eq.
~4.6! of Ref. @1#‡. The exchange contribution decays fas
than any inverse power law of the distance, because
phase factor originating from the magnetic field does
modify the argument in Sec. V D of Ref. @1#. The other part
raaab

(2)T unonexchof the correlation is calculated by integration

the loop correlation over the internal degrees of freedom
the loops„see Eq.~4.7! of Ref. @1#…. In the thermodynamic
limit the loop density does not depend on the position of
loop andraaab

(2)T unonexchcan be written in terms of the Urse

function as
ic

r

st
er

n-

is

g

c
-
e

r
he
t

f

e

raaab

~2!T unonexch~r !5(
pa

(
pb

papbE D~Xa!r~xa!

3E D~Xb!r~xb!h~r ,xa ,xb!, ~71!

wherex is a global notation for the internal degrees of fre
dom of a loop,x5(a,p,X), andr(x)[ra,p(X). The large-
distance behavior ofraaab

(2)T unonexchis analyzed by a reorgani

zation of diagrams in order to exhibit the properties aris
from the structure ofW.

As in Sec. I B of Ref.@5#, we introduce other diagram

calledP̃, by splitting the resummed bondFR into two bonds
W andFR6 ,

FR5W1FR6 . ~72!

The point of the decomposition~72! is that the leading
asymptotic behavior ofFR6 falls off as 1/r 6 at large dis-
tances. The representation ofh(r ,xa ,xb) in terms of dia-

gramsP̃ is the same as that given in Eq.~29! and diagrams

P̃ have the same properties as diagramsP. Let H denote the

sum of the so-calledP̃Wc
diagrams that remain connecte

when a bondW is cut. According to some kind of Dyson
equation~which also appears in the definition of the ‘‘d
rect’’ correlation function! h(r ,xa ,xb) is equal to a series o
convolutions involving H and W. If we denote g(k)
5*drexp@ik•r #g(r ), the series reads in Fourier space

r~xa!h~k,xa ,xb!r~xb!

5H~k,xa ,xb!1(
I 51

` E dx1•••dx I dx18•••dx I8

3K~k,xa ,x1!3W~k,x1 ,x18!K~k,x18 ,x2!•••

3W~k,x I ,x I8!K~k,x I8 ,xb!, ~73!

where

K~Ri2Rj ,x i ,x j ![d~Ri2Rj !dx i ,x j
r~x i !

1H~Ri2Rj ,x i ,x j !,

with dx i ,x j
[da i ,a j

dpi ,pj
d(X i2X j ). The representation ofh

in terms of the graphH and a sum of chains made wit
graphsK linked by I bonds W can be written with short
notations as

rhr5H1K* W* K1K* W* K* W* K1•••. ~74!

This decompositon is useful becauseH, and subsequentlyK,
decays as 1/r 6 for topological reasons~see Sec. III A of Ref.
@5#!, even before integration over the shapes of the r
pointsLa andLb . Moreover, the dimensional analysis an
the invariance under inversion show that the convolutions
Eq. ~73! fall off at least as 1/r 5. In fact, whenB050, be-
cause of the invariance under rotation, there appear pow
of the Laplacian and contributions that would decay as 1r 5

according to the sole dimensional analysis are in fact sh
ranged because of the harmonicity of the Coulomb poten
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The general mechanism was discussed in Sec. I B of Ref@5#
and it is exemplified in the solvable model of Sec. V whe
the leading asymptotic behavior is in fact given byb2w2

5W2 according to Eq.~60!. WhenB0Þ0, there is no invari-
ance under rotation and convolutions indeed decay as 1r 5,
as in the solvable model where the correlation is given
2bw5W.

The following discussion is organized in two steps. Fir
we give the slowest possible decay of the convolutions in
~73! that is derived from dimensional analysis and invarian
under inversion. Since the term ‘‘rotational invariance’’ us
in Sec. III B of Ref.@5# is too restrictive and can be replace
by ‘‘invariance under inversion,’’ the result about the min
mal inverse power law is the same in the presence or in
absence of the magnetic field. However, the exponent of
slowest decay is altered by the existence ofB0 , because it
depends crucially on rotational invariance arguments. T
point will be discussed in the second step.

B. Dimensional analysis and invariance under inversion

The large-distance behavior of the convolutions in E
~73! is derived from a Fourier transform analysis accord
to the principles presented in Sec. II C of Ref.@5#. In short,
the algebraic tails of a functiong at large distances are ex
actly given by the inverse Fourier transforms of the terms
the small-k expansion ofg(k) that are nonanalytic in the
components ofk. Subsequently, the leading large-distan
decay of a convolutiong1* g2 is easily determined: it is
merely given by the nonanalytic terms in the small-k expan-
sion of the product of the small-k expansions ofg1 and g2
that are of the lowest order inuku. For instance, the
asymptotic behavior of the inverse Fourier transform of
product g1(k)g2(k) is given by that of the two singula
termsg1(k50)Sg2

(k) andg2(k50)Sg1
(k), which is of the

lowest order and does not vanish. IfSg1
(k) is of order zero

in uku, an extra singular termSg1
(k)Sg2

(k) appears. IfSg1

and Sg2
are of the same order inuku, then the asymptotic

behavior is given by the sum of the terms involvingSg1
(k)

or/andSg2
(k).

In order to distinguish the various~leading and sublead
ing! algebraic tails, we introduce the following decompo
tion of W derived from Eq.~36!:

W~k,x i ,x i8!52bea i
ea

i8E0

pi
dt iE

0

pi8dt i8$d„@t i2P~t i !#

2@t i82P~t i8!#…21% (
mi51

`

(
ni51

`
1

mi !ni !

3w[mi ,ni ]@k,X i~t i !,X i8~t i8!#, ~75!

wherew[mi ,ni ] is a singular term of orderukumi1ni22,

w[mi ,ni ]@k,X i~t i !,X i8~t i8!#[@ iX i~t i !•k#mi

3@2 iX i8~t i8!•k#ni
4p

k2
.

~76!
,
q.
e

e
e

is

.

n

e

-

The relation~73! may be written as a series of chains, ea
of which involvesI termsw[mi ,ni ] . After integration over the
shapes of the root pointsLa andLb , these chains are de
noted byCI(k;$mi%,$ni%) as in Sec. III B of Ref.@5#.

In order to simply discuss symmetry arguments, we a
introduceKi ,i 11

[ni ,mi 11] :

Ki ,i 11
[ni ,mi 11]

~k![E D~X i8!E D~X i 11!@k•X i8~t i8!#ni

3@k•X i 11~t i 11!#mi 11K~k,x i8 ,x i 11!

~77!

and

Ka,1
[m1]

~k![E D~Xa!E D~X1!@k•X1~t1!#m1K~k,xa ,x1!.

~78!

with a similar expression forKI ,b
[nI ] (k). According to these

definitions, up to multiplicative factors,

CI~k;$mi%,$ni%!}
1

uk2u I
Ka,1

[m1]
~k!K1,2

[n1 ,m2]
~k!

3K2,3
[n2 ,m3]

~k!•••KI 21,I
[nI 21mI ]~k!KI ,b

[nI ]~k!.

~79!

SinceH decays as 1/r 6, even before integration over the loo
shapes, the first nonanalytic term in the small-k expansion of
H(k,x i8 ,x i 11) is of orderuku3 and will be calledSH

(3)(k). As
a result,

H~k,x i8 ,x i 11! ;
uku→0

E dr H~r ,x i8 ,x i 11!

1 i E dr ~k•r !H~r ,x i8 ,x i 11!

2
1

2E dr ~k•r !2H~r ,x i8 ,x i 11!

1SH
~3!~k,x i8 ,x i 11!1Oanal

~3! ~k!1O~ uku4!,

~80!

where Oanal
(n) (k) denotes an analytic term of orderukun,

whereasO(ukun) is just a term of orderukun. We notice, that,
as explained in Ref.@5#, no lnuku term appears because of th
structures ofW and of the algebraic tails that it induces. Th
first three terms in the small-k expansion ofKi ,i 11

[ni ,mi 11] (k) are
analytic and they may vanish according to arguments of
variance under inversion, even whenB0Þ0. Indeed, the
property

K~2k,2X i8 ,2X i 11!5K~k,X i8 ,X i 11! ~81!

implies that

Ka,1
[m1]

~k!5Oanal
„m11u~m1!…

~k!1O~ ukum11u~m1!12!, ~82!
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where u(m)50 if m is even andu(m)51 if m is odd.
Oanal

„m11u(m1)…(k) comes either from the first or the second te
in the small-k expansion ofK. The structure of the small-k
expansion ofKI ,b

[nI ] (k) is similar, while

Ki ,i 11
[ni ,mi 11]

~k!5Oanal
„ni1mi 111u~ni1mi 11!…

~k!

1O~ ukuni1mi 111u~ni1mi 11!12!. ~83!

By inspection, it can be checked thatni1mi 111u(ni
1mi 11)12<ni1mi 1113. Henceforth, the second term
the right-hand side of Eq.~83! may arise from the nonana
lytic term SH

(3) . Its study requires a more detailed analysis
the structure of the algebraic tails, which will be done in S
VII.

Finally, according to Eqs.~82! and ~83!, the first term in
the Fourier transform of a convolution~79! with I bondsW is
of order ukuDCI with

DCI522I 1m11u~m1!1nI1u~nI !

1(
i 51

I 21

@ni1mi 111u~ni1mi 11!#. ~84!

Moreover, the next term in the small-k expansion of Eq.~79!
is of orderukuDCI12. When themi ’s andni ’s vary, DCI takes

only even values, and its lowest value is equal to 2. Sub
quently, the dimensional analysis and the invariance un
inversion ensure that a convolutionCI decays at least as 1/r 5,
and the first subleading tail falls off at least as 1/r 7.

C. Full or partial rotational invariance

The preceding section dealt with the part of Sec. III B th
is not changed, and now we turn to the part relative to a
lytical properties which is modified by the presence of t
magnetic field. According to the dimensional analysis, a c
volution may decay as 1/r 5 if DCI takes its minimal value

DCI ,min52, namely, ifm151,2, nI51,2, andni5mi 1151

for all i 51, . . . ,I . Such a convolution does fall off as 1/r 5 if
the first term in its Fourier transformCI(k;$mi%,$ni%) is
nonanalytic.

In the absence ofB0 , the system is invariant under rota
tions around any axis, and the first analytic term in Eq.~82!
or in Eq. ~83! is exactly proportional tok2 for the
$mi ,ni% i 51, . . . ,I that giveDCI ,min . As a consequence, in th
latter cases, the first term in the convolution~79! is exactly
proportional touku2 and is analytical. Subsequently, accor
ing to Sec. VI B, any convolutionCI(r ;$mi%,$ni%) decays at
least as 1/r 7.

In the presence ofB0 , the system is invariant under rota
tions around thez axis and the first-order term inKi ,i 11

[ni ,mi ] (k)

is a sum of contributions of the formuku2(Ni2qi )@k#z
2qi with

Ni5ni1mi 111u(ni1mi 11) andqi50, . . . ,Ni . In the con-
volutions CI for which DCI5DCI ,min

, everyK starts at the

order uku2 by a sum of two terms which are proportional
k2 and @k#z

2 respectively. Thus, after expanding the produ
of the small-k expansions of theK’s, the first term in Eq.
~79! contains nonanalytic contributions
f
.

e-
er

t
a-

-

t

1

~k2! I
~k2! I 112Q~@k#z

2!Q5uku2~cosuk!2Q ~85!

as soon asQ>2. (uk is the angle betweenB0 andk.) Thus
a 1/r 5 falloff, with an angular dependence, may appear.

The integration over the orientation ofk restores the ana
lyticity of the first term in the expansion ofCI(k;$mi%,$ni%).
Moreover,

E dr̂ f ~r !5E dke2 ik•rE dk̂ f ~ uku,k̂•B̂0!, ~86!

wherer̂[r /ur u andk̂[k/uku. Thus, after integration over th
orientation ofr , the convolutions decay in fact as 1/r 7.

As a conclusion, in the absence ofB0 , the particle-
particle correlation decays as 1/r 6 and this tail comes from
H, whereas, in the presence ofB0 , the particle-particle cor-
relation falls off as 1/r 5 and this tail originates from the
convolutions~while the 1/r 6 subleading tail arises fromH).
After integration over angles, the 1/r 5 tail disappears and the
leading order is given by the 1/r 6 tail coming fromH.

VII. STRUCTURE OF LEADING AND SUBLEADING
ALGEBRAIC TAILS OF DIAGRAMS

The leading and subleading tails of theP̃Wc
diagrams are

analyzed first in order to derive the asymptotic behaviors
the convolutionsC. The result will be used extensively i
Sec. VIII. As in Ref. @5#, we will denotez[(a,p,Z) and
z8[(a8,p8,Z8) the internal degrees of freedom of loop
This notation will avoid confusion of these points with th
intermediate points of convolutionsC.

A. Definitions

As discussed in Sec. III D of Ref.@5#, any leading or

subleading algebraic tail of a diagramP̃(ra2rb ,xa ,xb)
comes from the leading or subleading behavior ofL elemen-

tary algebraic tailsS(g l )[ql ,ql8] (r ,z l ,z l8) with l 51, . . . ,L. By
definition an elementary algebraic tail is either t
asymptotic behavior of a single bondW or FR6 or of a con-

volution of diagramsP̃ and algebraic bonds. For a convolu
tion C, L51 and the convolution contains at least one bo

W. For a P̃Wc
diagram,L51 corresponds to a convolutio

without any bondW, whereas, whenL>2, theS(g l )[ql ,ql8] ’s
may be convolutions involvingW bonds. These elementar
algebraic tails are denoted byS(g)[q,q8] (r ,z,z8) because they
decay as 1/r g and satisfy two properties. Property~A! reads

g5P~q,q8!1q1q8, with inf~q,q8!>P~q,q8!.
~87!

(B) corresponds to two symmetries:~1! S(g)[q,q8] (r ,z,z8) is
invariant under global inversion of its arguments,

S~g![q,q8]~2r ,2Z,2Z8!5S~g![q,q8]~r ,Z,Z8! ~88!

~2! S(g)[q,q8] (r ,z,z8) is of parity (21)q @(21)q8# under the
inversionZ→2Z @Z8→2Z8#, namely,
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S~g![q,q8]~r ,2Z,Z8!5~21!qS~g![q,q8]~r ,Z,Z8!. ~89!

S(g)[q,q8] (r ,z,z8) is denoted byS(g)[q,q8] (r ,Z,Z8) when only
the shapes of the loops are important for the discussion.
notice that the present definition ofS(g)[q,q8] (r ,z,z8) is more
general than that used in Sec. III D of Ref.@5#. The latter
definition was restricted to convolutions with algebra
bonds at both ends in order to preserve a tensorial struc
because, instead of property (B), we used the following
property (B*):

S~g![q,q8]~r ,z,z8!

5Am1 , . . . ,mq

[q] ~Z!An1 , . . . ,nq8

[q8] ~Z8!Sm1 , . . . ,mqn1 , . . . ,nq8

~g! ~r !

whereAm1 , . . . ,mq

[q] (Z) andAn1 , . . . ,nq8

[q8] (Z8) are tensors of rank

q andq8, respectively, andSm1 , . . . ,mqn1 , . . . ,nq8

(g) (r ) decays as

1/r g. In the present paper, we consider more general st
tures S(g)[q,q8] (r ,z,z8) so that property~B! is weaker than
property (B*). The advantage is that property~B! is valid in
the presence as in the absence of magnetic field and
sufficient for deriving the properties which are in comm
for both cases.

An argument similar to that given in Sec. III D of Ref.@5#
shows that, before integration over loop shapes, the lea

and subleading tailsT of a diagramP̃ have a structure which
satisfies property (A), with gT5( l 51

L @Pl(ql ,ql8)1ql1ql8#
1Qa1Qb , and property (B),

T~ra2rb ,xa ,xb!

5S~gT![Qa1( l ql ,Qb1( l 8ql 8]~ra2rb ,xa ,xb!,

~90!

where l runs from 1 toL, and Qa (Qb) is the number of
derivatives with respect tora (rb) which are performed to
obtain the subleading termT.

Since some tails arising from convolutions involvingW
bonds area priori algebraic and prove to be short rang
after integration over loop shapes, we deal with convolutio
C separately. According to the definition of theKi ,i 11

[nimi ] ’s, the
convolutionsC involve the algebraic tails of the inverse Fo
rier transforms of functions

E D~Xa!E D~Xb!~k•Xa!na~k•Xb!mbP̃Wc
~k,Xa ,Xb!.

~91!

As shown in the following two sections, the conclusions a

the same for theP̃Wc
diagrams in the absence as in the pr

ence ofB0 . On the contrary, the discussion about the co
volutionsC is different whetherB0 is switched on or not.

B. Tails arising from P̃Wc
diagrams

The contribution of a tailT coming from a

~k•Xa!na~k•Xb!mbP̃Wc
~k,Xa ,Xb!
e

re,

c-

is

ng

s

e

-

-

decays as 1/r gT1na1mb before integration over the loop
shapesXa and Xb . SinceT is of parity (21)Qa1( l ql under

Xa→2Xa and (21)Qb1( l ql8 under Xb→2Xb , the invari-
ance of

E D~Xa!E D~Xb!~k•Xa!na~k•Xb!mbP̃Wc
~k,Xa ,Xb!

under inversion implies that the only valuesGWc
(na ,mb) of

gT1na1mb that survive after integration over the loo
shapesXa andXb correspond to the even values ofna1Qa

1( lql andmb1Qb1( lql8 , namely,

G~na ,mb ;P̃Wc
!5(

l 51

L

Pl~ql ,ql8!1minH na1Qa1(
l 51

L

qlJ
1uS minH na1Qa1(

l 51

L

qlJ D
1minH mb1Qb1(

l 51

L

ql8J
1uS minH mb1Qb1(

l 51

L

ql8J D 12N,

~92!

where min$•••% denotes the minimal value of$•••% when
the ql ’s and ql8’s vary while Qa takes any positive intege
value ~zero included!. u(n), which has been defined in
Sec. VI B, ensures that we write the even values taken
$•••%. The point is to know both the minimal value taken b
( l 51

L ql and( l 51
L ql8 in order to determine the even values

G(na ,mb ;P̃Wc
)2( l 51

L Pl(ql ,ql8), and the minimal odd and

even values taken by( l 51
L Pl(ql ,ql8) when theql ’s andql8’s

vary.
First the minimal odd and even values taken by ev

P(q,q8) are derived in Appendix A. The important resul

are the following. For tailsT of diagramsP̃Wc
with L51, the

algebraic asymptotic behavior of the single elementary a
braic tailS(g)[q,q8] does not involve anyW bond or any con-
volution of W bonds, so thatq>2 andq8>2. In this case,
the first allowed value forP(q,q8) is

Peven,min~q,q8;P̃Wc
,L51!52 with q>2 and q8>2,

~93!

which is realized by anFR6 bond. The minimal odd allowed
value is given by convolutions involving onlyFR6 bonds,
with the result
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Podd,min~q,q8;P̃Wc
,L51!5H 5 if inf ~q,q8!52

3 if inf ~q,q8!>3.
~94!

For tails T of diagrams P̃Wc
with L>2, the various

S(g)[q,q8] ’s may involve W bonds. Then, the minimal od
allowed value forP(q,q8) is

Podd,min~q,q8;P̃Wc
,L52!51 for any ~q,q8!, ~95!

which is realized by convolutions where the nonanaly
terms arise only fromW bonds. Moreover,
a

Peven, min~q,q8;P̃Wc
,L52!

5H 6 if q5q851

4 if ~q51, q8>2! or ~q>2, q851!

2 if inf ~q,q8!>2.

~96!

When inf(q,q8)>2, P(q,q8)52 is realized by anFR6
bond. P(q,q8)5612N and P(q,q8)5412N are realized
by convolutions involving at least oneFR6 bond. As a con-
sequence, the minimal allowed value of( l 51

L Pl(ql ,ql8) for a

P̃Wc
diagram is
ine
minH (
l 51

L

Pl~ql ,ql8!J 5H 2 if L51 in which case ql>2 and ql8>2

L if L>2 in which case q and q8 take any value.
~97!

These minimal values are always realized.

Now, the point is to know the minimal odd value, min$dT
odd%, of dT[( l 51

L Pl(ql ,ql8)2min$( l 51
L Pl(ql ,ql8)%. For a P̃Wc

diagram withL51 †called case~IV ! in the following as in Appendix C of Ref.@5#‡, dT5( l 51
L Pl(ql ,ql8)22 and, according to

Eq. ~94!, the discussion of min$dT
odd% can be organized by inspection of the various casesq5q852 (q52, q8>3) or (q

>3, q852), and inf(q,q8)>3. We get

G~na ,mb ;P̃Wc
,L51!2na2u~na!2mb2u~mb!265H 0,1, . . . ifna and mb are odd

0,2,3, . . . inother cases.
~98!

In the caseL>2, according to Eq.~96!, min$( l 51
L Pl(ql ,ql8)%5L and three cases are to be distinguished in order to determ

the minimal odd value ofdT5( l 51
L Pl(ql ,ql8)2L.

Case~I!: ql5ql851 for all l . Then min$dT
odd%55 and(ql51

L ql5(ql51
Lql85L.

Case~II !: there exists somel 0 such that (ql 0
51, ql 0

8 >2), while for all lÞ l 0 , (ql51, ql851) or (ql51, ql8>2) or (ql

>2, ql851). Then min$dT
odd%53 and(ql51

L ql>L while (ql51
L ql8>L11. The same is true when the roles ofql 0

andql 0
8 are

exchanged.†We notice that in Ref.@5# there is a misprint in the definition of case~II !, whereql52 must be replaced byql
>2.‡

Case~III !: there exists somel 0 such that inf(ql 0
,ql 0

8 )>2. Then min$dT
odd%51 and(ql51

L ql>L11 and(ql51
L ql8>L11.

Then the discussion of Appendix C of Ref.@5# can be resumed.~Contrarily to what was done in Ref.@5#, the discussion is
carried out for anyna andmb from the start, and the casesna50 or nb50 are derived at the end.! The first odd value ofdT
is

min$dT
odd%55

5 in case~ I!

3 in case~ II !

1 in case~ III !

3 if inf ~q,q8!52 and 1 if inf~q,q8!>3 in case~ IV !.

~99!
By considering from the start the case wherenaÞ0
andmbÞ0, we get the same final results as in Eq.~C40!
of Ref. @5#. †The misprints in Appendix C of Ref.@5#
and the mistake in Eq.~C37!, which are given in
Appendix B of the present paper, do not affect the fin
results.‡

The results are
l

F21F E D~Xa!D~Xb!@k•Xa~t!#naP̃Wc
~r ,Xa ,Xb!

3@k•Xb~t8!#mbG ;
r→`

1

r na1mb1u~na1mb!1d~na ,mb!
. . . ,

~100!



e

p

r

e

u
e
t

on

e

ab

o

e

n
s.

tic
nt

the

in
c

5284 PRE 58F. CORNU
where, if na and mb are odd, d(na ,mb)50,1, . . . and
d(na ,mb)50,2,3, . . . in other cases. The result is the sam
as in the conclusion of Appendix B of Ref.@5# because the
important property at stake is Eq.~99!. As a consequence, u
to misprints, the results derived in Appendix C of Ref.@5#
and stated in Sec. III E of Ref.@5# are still valid,

E D~Xa!D~Xb!P̃Wc
~r ,Xa ,Xb! ;

r→`

1

r 6 ,
1

r 8 ,
1

r 9 , . . . ,

~101!

where the brief notation in Eq.~101! means that there appea
tails decaying as 1/r 6, 1/r 8, 1/r g, with g>9. Moreover, the

following property is valid for aP̃Wc
diagram in the absenc

as well as in the presence ofB0 ,

F21F E D~Xa!D~Xb!@eik•Xa~t!21#P̃Wc
~r ,Xa ,Xb!G

;
r→`

1

r 8
,

1

r 10
,

1

r 11
, . . . ~102!

while

F21F E D~Xa!D~Xb!@eik•Xa~t!21#P̃Wc
~r ,Xa ,Xb!

3@e2 ik•Xb~t8!21#G ;
r→`

1

r 10
,

1

r 11
, . . . . ~103!

As a comment, the discussion in Appendix A is analogo
to that of Appendix B of Ref.@5#. Because of a mistake, th
conclusions~B10! and~B11! of the latter Appendix turn ou
to be valid only in the presence of the magnetic fieldB0 ,
whereas they must be modified whenB050, as displayed in
Appendix C of the present paper. However, the conclusi
~94! and~96!, which are weaker than Eqs.~B10! and~B11!,
are valid whetherB050 or B0Þ0 and they ensure that th

G(na ,mb ;P̃Wc
)’s are the same in the presence or in the

sence of the magnetic field.

C. Tails arising from convolutions C

Thanks to the study of the leading and subleading tails

P̃Wc
, Eqs.~82! and ~83! can be written more precisely as

Ka,1
[m1]

~k!5Oanal
„m11u~m1!…

~k!1Oanal
„m11u~m1!12…

~k!1•••

1S„m11u~m1!13…~k!1•••, ~104!

where the next nonanalytic terms are of ord
ukum11u(m1)15, ukum11u(m1)16, . . . , while

Ki ,i 11
[ni ,mi ]~k!5Oanal

„ni1mi 111u~ni1mi 11!…
~k!

1Oanal
„ni1mi 111u~ni1mi 11!12…

~k!1•••

1S„ni1mi 111u~ni !1u~mi 11!13…~k!1•••,

~105!
s

s

-

f

r

with u(ni)1u(mi 11)>u(ni1mi 11). Nonanalytic terms ap-
pear at every orderukug23 with g23>ni1mi 111u(ni)
1u(mi 11)14 if ni and mi 11 are odd, andg23>ni
1mi 111u(ni)1u(mi 11)15 in other cases. The discussio
in Sec. III F of Ref.@5# can be resumed by replacing Eq
~3.34! and~3.35!, which are valid only whenB050, by Eqs.
~104! and~105! respectively. The analysis of the nonanaly
terms is similar to that performed in Sec. VI C of the prese
paper. CI(k,$mi%,$ni%) contains two kinds of nonanalytic
terms. On one hand, the terms@k#z

2n/(k2)p, which arise from
the breaking of rotational invariance byB0 , are of order
DCI,DCI12,DCI14, . . . in uku, where DCI is given by the
dimensional analysis of Sec. VI B. On the other hand,
nonanalytic terms involving at least oneK are of orderDCI
13, DCI15, DCI16, . . . as in thediscussion of Sec. III F

of Ref. @5#. According to Eq.~84!, DCImin
52 and

E D~Xa!D~Xb!CB0
~r ,Xa ,Xb! ;

r→`

1

r 5
,

1

r 7
,

1

r 8
, . . .

~106!

whereas

E D~Xa!D~Xb!CB050~r ,Xa ,Xb! ;
r→`

1

r 8
,

1

r 10
,

1

r 11
, . . . .

~107!

According to the dimensional analysis already performed
Appendix D of Ref. @5#, the structure of the nonanalyti
terms in *D(Xa)D(Xb)@exp$ik•Xa(t)%21#C(k,Xa ,Xb) is
the same as forCI(k,$mi%,$ni%), with DCI replaced by

D̃CI522I 1@11m11u~11m1!#1nI1u~nI !

1(
i 51

I 21

@ni1mi 111u~ni1mi 11!#. ~108!

The minimal value ofD̃CI is also 2 and

F21F E D~Xa!D~Xb!@eik•Xa~t!21#CB0
~k,Xa ,Xb!G

;
r→`

1

r 5
,

1

r 7
,

1

r 8
, . . . ~109!

whereas

F21F E D~Xa!D~Xb!@eik•Xa~t!21#CB050~k,Xa ,Xb!G
;

r→`

1

r 8
,

1

r 10
,

1

r 11
, . . . . ~110!

In the case of *D(Xa)D(Xb)@exp$ik•Xa(t)%
21#C(k,Xa ,Xb)@exp$2ik•Xb(t8)%21#, DCI is replaced by
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D̃̃CI522I 1@11m11u~11m1!#1@11nI1u~11nI !#

1(
i 51

I 21

@ni1mi 111u~ni1mi 11!# ~111!

but the nonanalytic terms involving at least oneK appear

only at the orderD̃̃CI15. The minimal value forD̃̃CI is equal

to 2 also. Thus

F21F E D~Xa!D~Xb!@eik•Xa~t!21#CB0
~k,Xa ,Xb!

3@e2 ik•Xa~t8!21#G ;
r→`

1

r 5
,

1

r 7
,

1

r 9
,

1

r 10
, . . . ~112!

whereas

F21S E D~Xa!D~Xb!@eik•Xa~t!21#CB050~k,Xa ,Xb!

3@e2 ik•Xa~t8!21# D ;
r→`

1

r 10
,

1

r 11
, . . . . ~113!

The present results whenB050 are more precise than thos
given in Ref.@5#. ~We notice that some misprints in Appen
dix D of Ref. @5# do not affect the results given in the latt
reference.! According to Eqs.~107!, ~110!, and ~113!, the
tails 1/r 5, 1/r 7, and 1/r 9 disappear whenB050, because
they come only from the nonanalyticities due to the break
of rotational invariance in the presence ofB0 , whereas tails
1/r 101N, with N>0, come from both breaking of rotationa
invariance and singularities in theK’s.

VIII. LEADING AND SUBLEADING ALGEBRAIC TAILS
OF VARIOUS CORRELATIONS

A. Interplay with the ‘‘Debye dressing’’

First, we exhibit a property of the bondFcc when charges
are summed over. In the following the ‘‘Debye’’ polarizatio
cloud of loops around a loopLa is defined as

SD~Ra2R1 ,x1 ;xa!5dxa ,x1
d~Ra2R1!

1r~x1!Fcc~La ,L1!. ~114!

In SD the variable after ‘‘;’’ always denotes a root poin
~This notation is slightly different from that of Ref.@5# and is
more precise.! The property

E dxaeaa
par~xa!SD~k,x1 ;xa!

5ea1
p1r~x1!

k2

k21k2

5
ea1

p1r~x1!

k2
k21O~ uku4! ~115!
g

implies that, if a diagramP behaves as 1/r n and may be
convoluted withFcc bonds, then the contribution ofSD* P to
(aearag

(2) T(r ) falls off at least as 1/r n12 and the contribution
from SD* P* SD to (a,geaegrag

(2) T(r ) decays at least a
1/r n14. More precisely, the tails 1/r n12 and 1/r n14 do exist
only if the k2 term arising from Eq.~115! does not cancel the
1/k2 singularity of the Coulomb potential; otherwise, th
leading algebraic tails are replaced by short-ranged beh
iors.

The previous mechanism for a cascade of power laws
be worked out as follows. First we reorganize the diagra
in order to produce integral relations in whichSD appears
explicitly. For that purpose, we introduce the following de
nitions. We call a ‘‘Coulomb-root’’ point a root pointLa that
is involved either in one and only one bondFcc(La ,Pi) or
Fcm(La ,Pi). On the contrary, a non-Coulomb-root pointLa
is involved either in one bondFR(La ,Pi) or Fmc(La ,Pi) or
in at least two bonds, whatever they are. Lethn2(La ,Lb) be
the sum of theP diagrams whereLa is a non-Coulomb-root
point, whereasLb is of any kind ~Coulomb-root or non-
Coulomb-root point!. hnn(La ,Lb) is defined in a similar
way. With these definitions, the excluded-convolution ru
lead to the left-dressing relation

h5Fcc1Fcm1SD* hn21Fcmr* h ~116!

as well as to the right-dressing relation

h5Fcc1Fmc1h2n* SD1h* rFmc, ~117!

where the definition ofh2n(La ,Lb) is obtained from that of
hn2(La ,Lb) by exchanging the roles ofLa andLb . These
relations are convolutions for the loop-position variab
while the internal degrees of freedom of the intermedi
loop are integrated over. In these short notations, we use
convention thatr is the density of the intermediate point o
the convolution and thatSD is the Debye polarization cloud
around the root point of the convolution~as detailed in Sec
IV C of @5#!. There are two extra integral relations,

h2n5Fcm1SD* hnn1Fcmr* h2n ~118!

and

hn25Fmc1hnn* SD1hn2* rFmc. ~119!

By using the above relations repeatedly, we decomposh
as a sum of five terms which are convenient to discuss
leading and subleading tails of various correlations beca
they exhibit dressings bySD andrFmc. The decomposition
is introduced in Sec. IV D of Ref.@1#. The first one,h(A) ,
decays faster than any inverse power law of the distance
the other ones read

h~B![SD* hnn* SD , ~120a!

h~C![SD* hn2* rFmc, ~120b!

h~D ![Fcmr* h2n* SD , ~120c!

h~E![Fcmr* h* rFmc. ~120d!
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The leading and subleading algebraic tails of the partic
particle correlations at large distances are derived from
detailed study of the asymptotic behaviors~101! and~106! of

diagramsP̃Wc
and convolutionsC, respectively. We find tha

rag
~2!TuB0

;
r→`

1

r 5
,

1

r 6
, . . . . ~121!

Inspection of the more refined results~101!–~103!, ~106!,
~109!, and~112! shows the following important results whic
are valid in the presence as well as in the absence ofB0
~apart from the first one which is only relevant to the the c
B0Þ0).

~I! The 1/r 5 tail comes fromh(B)1h(C)1h(D)1h(E) .
~II ! The 1/r 6 tail originates only fromh(B) .
~III ! The 1/r 8 tail arises fromh(B)1h(C)1h(D) .
~IV ! The 1/r 10 tail comes fromh(B)1h(C)1h(D)1h(E) .
The cascade of power laws may now be discussed tha

to the above remark about the origin of the subleading t
in terms of the contributionsh(B) , h(C) , h(D) , and h(E) .
Indeed, according to Eq.~115!, for B050 or B0Þ0, the
terms contributing to the 1/r 6 tail of rag

(2)T become

1/r 8 (1/r 10) tails in (gegrag
(2)T ((a,geaegrag

(2)T) or decay
faster; the terms contributing to the 1/r 8 tail of rag

(2)T become
at least 1/r 10 tails when charges of both species are summ
over.

Consequently, the tails of the particle-charge and cha
charge correlations in the presence ofB0 are

(
g

egrag
~2!TuB0

;
r→`

1

r 5
,

1

r 7
,

1

r 8
, . . . , ~122!

(
a,g

eaegrag
~2!TuB0

;
r→`

1

r 5
,

1

r 7
,

1

r 9
,

1

r 10
, . . . . ~123!

WhenB050, the 1/r 5 and 1/r 7 tails, which arise from the
convolutionsC, disappear inrag

(2)T according to Eq.~107!.
Moreover, inspection of Eqs.~101!–~103!, ~107!, ~110!, and
~113! shows that the 1/r 9 tail of rag

(2)T comes only fromh(B)

when B050 and, according to Eq.~115!, it disappears as
soon as charges are summed over~because the order of th
possible singularity in Fourier space is increased by a t
proportional touku2). As a consequence,

rag
~2!TuB050 ;

r→`

1

r 6
,

1

r 8
,

1

r 9
, . . . , ~124!

(
g

egrag
~2!TuB050 ;

r→`

1

r 8
,

1

r 10
,

1

r 11
, . . . , ~125!

(
a,g

eaegrag
~2!TuB050 ;

r→`

1

r 10
,

1

r 11
, . . . . ~126!

B. Diagrammatic structure of leading tails

In this section we only consider the leading tails of t
particle-particle, particle-charge, and charge-charge corr
-
e

e

ks
ls

d

e-

m

la-

tions. We show that they can be expressed only in term
hnn with various dressings that involveSD or/andrFmc.

1. Basic properties

The derivation relies on two kinds of ingredients. Fir
we use repeatedly dressing relations that are valid in
presence as well as in the absence ofB0 . Some have already
been given in Eqs.~116!–~119!; the other ones are

Fcc* rFmc~k,x2 ,xb!5O~ uku2! ~127!

and

Fmc* rFmc~k,x2 ,xb!5O~ uku2!. ~128!

Second, the detailed survey of the decay of diagrams
shown that, in the presence ofB0 , any diagram decays a
least as 1/r 5 after integration over the shapesX of the root
points,

E D~Xa!r~xa!E D~Xb!r~xb!PB0
~r ,xa ,xb! ;

r→`

1

r 5

~129!

whereas, in the absence ofB0 , Eqs.~103! and ~113! imply
that

F21F E D~Xa!r~xa!E D~Xb!r~xb!

3@eik•Xa~t!21#PB050~k,xa ,xb!G ;
r→`

1

r 8 ~130!

and

F21F E D~Xa!r~xa!E D~Xb!r~xb!@e2 ik•Xa~t!21#

3@eik•Xb~t8!21#PB050~k,xa ,xb!G ;
r→`

1

r 10
. ~131!

Third, the Debye screening described by Eq.~115! will play
a role when charges are summed over.

2. In the presence of B0

The analysis based on the previous properties shows
the leading 1/r 5 tail of the particle-particle correlationrag

(2)T

comes only from

SD* * hnn* SD* . ~132!

In Eq. ~132! we have set

SD* ~r ,x2 ;xb![SD~k,x2 ;xb!1r~x2!Fmc~k,x2 ,xb!,
~133!

where the variable after ‘‘;’’ is a Coulomb-root point forSD
as well as forFmc and the superscriptsm andc are associated
with the internal pointx2 and the root pointxb , respectively.

The 1/r 5 asymptotic behavior of the particle-charge co
relation (gegrag

(2)T may originate only from the 1/r 5 tail of
the particle-particle correlation. According to Eq.~115!, if
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*D(Xa)r(xa)*D(Xb)r(xb)@P* SD#(r ,xa ,xb) decreases a
1/r n, then, after summation overeg the 1/r n falloff turns into
a slower decay, at least 1/r n12. Therefore, inSD* * hnn* SD*
only the part

SD* * hnn* rFmc ~134!

does contribute to the 1/r 5 tail of the particle-charge corre
lation. For the same reason, the 1/r 5 asymptotic behavior of
the charge-charge correlation arises only from

Fcmr* hnn* rFmc. ~135!

We notice that, as charges are summed over, the 1/r 5 tails,
all of which originate from the same diagrammatic structu
~132!, involve in fact fewer and fewer contributions.

3. In the absence of B0

As already mentioned in Sec. VIII A, the leading 1/r 6

decay of the particle-particle correlationrag
(2)T is due only to

h(B) , namely, to

SD* hnn* SD . ~136!

On the contrary, the 1/r 8 subleading tail ofrag
(2)T comes

from h(B)1h(C)1h(D) . After summation over the charg
eg , the 1/r 8 tail coming fromh(D) turns into a 1/r 10 decay.
By using the basic properties~127!, ~128!, and~130! together
with the fact that any diagram decays at least as 1/r 6 after
integration over the loop shapes, the 1/r 8 tail in h(C) is
shown to originate only from the partSD* hnn* @rFmc

1rFcc* rFmc#. Eventually, the 1/r 8 behavior of the particle-
charge correlation reduces to the asymptotic decay of

SD* hnn* SD** . ~137!

In Eq. ~137! SD** (k,x2 ;xb) is defined as

SD** [SD1rFmc1rFcc* rFmc5SD* @d1rFmc#,
~138!

where the variable after ‘‘;’’ in SD** (k,x2 ;xb) is a
Coulomb-root point as in the definition ofSD . The 1/r 10

subleading tail ofrag
(2)T originates fromh(B)1h(C)1h(D)

1h(E) . By using the same arguments as above, one sh
that the 1/r 10 tail of h(C) comes in fact only from
SD* hnn* SD* rFmc, that of h(D) from Fcmr* SD* hnn* SD ,
and that ofh(E) from Fcmr* SD* hnn* SD* rFmc. Eventually,
the 1/r 10 tail of the charge-charge correlation originates on
from

SD** * hnn* SD** . ~139!

As a final remark, we compare the formulas in both cas
B050 andB0Þ0. On one hand, in the presence ofB0 , the
Debye screening relation~115! makesSD disappear in the
1/r 5 tail as more charges are summed over. On the o
hand, in the absence ofB0 , SD is responsible for the cas
cade of power laws in the leading tails and it remains in
diagrams that do contribute to the coefficients of t
e

s

s,

er

e

asymptotic behaviors. As a consequence, the diagramm
structure of the latter ones is more and more complex
charges are summed over.

C. Induced charge

1. Basic formulas

First, we exhibit the expression of the internal screen
rule ~1! in terms of the loop Ursell functionh and its ‘‘De-
bye’’ approximationFcc. According to Eqs.~33!, ~34!, ~71!,
and Eq.~4.9! of Ref. @1#, Eq. ~1! reads

05E dr(
g

egSag~r !5 (
pa51

` E D~Xa!par~xa!

3G$h2Fcc%~k50,xa!, ~140!

where

Gf~k,x![E dxb r~xb!eab
E

0

pb
dt e2 ik•Xb~t! f ~k,x;xb!.

~141!

The induced charge(gegrg
ind(r ;dq) in the presence of an

infinitesimal external point chargedq located atr50 can be
derived in two different ways. First, it may be obtained
linearizing the result for the particle-charge correlati
(gegrag

(2)T(r ) with respect to the chargeea . Indeed, a quite
general statement is that

(
g

egrg
ind~r ;ea ,ra50!5 lim

ra→0

(
g

egrag
~2!T~r !

ra
. ~142!

This relation states that the charge density induced by
chargeea different from those in the plasma can be retriev
from the particle-charge correlation in the limit where o
speciesa becomes more and more dilute, so that it disa
pears from the plasma. In order to obtain the response to
infinitesimal charge, one must linearize the right-hand side
Eq. ~142! with respect toea .

The induced charge may also be calculated directly fr
the linear response theory, valid for any distributiondq(r ).
According to Sec. IV E of Ref.@5#, the structure of the latte
formula is different from the expression of the particl
charge correlation. It reads

(
a

eara
ind~k;dq!

dq~k!

52
k2~k!

k21k2
2

4pb

k2 E dxapaeaa
r~xa!G$h2Fcc%~k,xa!,

~143!

where we have set

k2~k![4pbE dxp2ea
2r~x!E

0

pdt

p
eik•X~t!. ~144!
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According to the definition~34! of k,

k2~k!5k2@11Aanal
~2! ~k!#1O~ uku4!, ~145!

whereAanal
(2) (k) is a term of orderuku2 which is analytic in the

components ofk. @The next term is of orderuku4 because
r(x) is invariant under inversion ofX.] When B0

50, Aanal
(2) (k) is exactly proportional tok2, whereas, when

B0Þ0, Aanal
(2) (k) may be written as the sum of ak2 term and

a @k#z
2 term. Moreover,Aanal

(2) (k) starts at order zero in loop
density.

2. Perfect external screening

First, we recall the mechanism in the classical case.
classical Ursell functionhag

cl,reg(ra ,rb) can be decomposed a

hag
cl,reg5FD,ag

cc 1 (
a1 ,a2

SD
cl~a1 ;a!* ha1a2

nn cl,reg
* SD

cl~a2 ;g!,

~146!

where FD,ag
cc [2beaegfD and fD is the Debye potentia

fD5exp(2kDr)/r with kD[A4pb(araea
2. SD

cl(ra2rb ,
g;a)[da,gd(ra2rb)1rgFD,ag

cc and hag
nn cl,reg is the sum of

the diagrams with non-Coulomb-root points that are b
with the bonds FD,ag

cc and FR,ag
cl,reg[exp@FD,ag

cc 2bvSR#21
2FD,ag

cc , wherevSR is a repulsive short-ranged potential th
prevents the collapse of opposite charges (vSR was omitted
in Sec. IV A of Ref. @5#!. Thus hnn cl,reg decays faster than
any inverse power law and its Fourier transform is analy
As shown in Ref.@5#, since

(
g

egSD
cl~k,g;a!5

ea

kD
2

k21O~ uku4! ~147!

and, according to Eq.~146!, the internal screening rules~1!
and ~2! are satisfied by(gegSag

cl,reg as well as by its Debye
approximation (gegSD

cl . Moreover, the first term in the
small-k expansion of the classical charge-charge correla
Ccl,reg(k)[(a,geaegrag

(2) Tcl,reg(k)1(aeara
2 is equal to its

value in the Debye approximation. Therefore both char
charge correlations~the exact and Debye expressions! satisfy
the Stillinger-Lovett sum rule

Ccl,reg~k! ;
uku→0

k2

4pb
. ~148!

On the other hand, according to the linear response rela
in the classical regime,

(
a

eara
ind,cl~k;dq!

dq~k!
52bCcl,reg~k!vC~k!. ~149!

Thus the rule~148! ensures that an infinitesimal extern
charge distribution is completely screened by the mediu
(gegrg

ind,cl(k50)52dq(k50).
In the quantum case, according to Eqs.~140!, ~143!, and

~144!, when the Ursell functionh is approximated by the sol
bondFcc, it happens to satisfy both the internal and perf
e

t

.

n

-

on

:

t

external screening conditions~1!, ~2!, and ~3!. In other
words, Fcc saturates the basic screening sum rules, asFD

cc

does in the classical case. Thus, according to Eqs.~140! and
~143!, the proof of the internal and perfect external screen
amounts to showing thath2Fcc gives a contribution of or-
der greater thanuku to (pa

*D(Xa)par(xa)G$h2Fcc%(k,xa)

and greater thanuku2 to *dxapaeaa
r(xa)G$h2Fcc%(k,xa).

First, we notice that, though the small-k expansions of
GSD

and GrFmc start at the orderuku separately, their sum

GS
D*

starts at the orderuku2,

GS
D*
~k,x2!5r~x2!p2ea2F12

k2~k!

k21k2G E0

p2dt

p2
e2 ik•X2~t!

5p2ea2F k2

k2
2Aanal

~2! ~k!1O~ uku3!G . ~150!

Therefore we use the dressing relations of Sec. VIII A
peatedly in order to makeSD* appear on the right side of th
expression ofh2Fcc. Then, as already done in the ca
whereB050 in Sec. IV E of Ref.@5#, h2Fcc is written as
the sum of three contributions:h(A* ) which decays faster
than any inverse power law of the distance,

h~A* ![SD* Fmc1Fcm* SD** 1$SD1Fcmr%* Fmc* rFmc,
~151!

h~B* ![SD* $hnn* SD** 1hn2* rFmc* rFmc%, ~152!

and

h~C* ![Fcmr* $h2n* SD** 1h* rFmc* rFmc%. ~153!

In fact, there appears a right dressing not only bySD* but also
by rFcc* rFmc, so thatSD** shows up again together wit
another right dressing byrFmc* rFmc. Since

G$rFcc* rFmc%~k,x2!5r~x2!p2ea2

k2~k!@k2~k!2k2#

~k21k2!2

5r~x2!p2ea2
Aanal

~2! ~k!1O~ uku4!

~154!

the small-k expansion ofGS
D** starts by ak2 term,

GS
D** ~k,x2!5r~x2!p2ea2

k2

k2
1O~ uku3! ~155!

while the small-k expansion ofGrFmc* rFmc has a structure
analogous to that ofG$rFcc* rFmc% given in Eq.~154!,

G$rFmc* rFmc%~k,x2!5r~x2!p2ea2
Aanal

~2! ~k!

3E
0

p2dt

p2
@eik•X2~t!21#1O~ uku4!.

~156!

As a consequence, the Fourier transforms ofGP* SD** and
GP* rFmc* rFmc start at least at orderuku2 ~in fact, at order
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uku3 in the case ofGP* rFmc* rFmc) while GSD* Fmc starts at

order uku2. Therefore the first internal screening rule~1! re-
written in Eq.~140! is satisfied, while the second one~2! is
also obeyed sinceSag(r ) is invariant under rotations.

On the other hand,*dxapaeaa
r(xa) f (k,x;xa), with f

5SD or f 5rFcm* G, starts at least at orderuku @in fact at
orderuku2 when f 5SD , according to Eq.~115!#. Eventually,
the above decomposition ofh exhibits the fact that the small
k expansion of*dxapaeaa

G$h2Fcc%(k,xa) starts at orderuku3

and according to Eq.~143! the external screening rule i
satisfied.

3. Large-distance decay

In this section we show that the induced charge den
decays with the same power law as the particle-charge
relation. @After only a quick glance at the linear respon
expression~143!, one might have rather thought that the i
duced charge density should decay as 1/r p22 if the particle-
charge correlation falls off as 1/r p]. The property to be
proved means that if the first nonanalytic term in t
Fourier transform of the particle-charge correlation is
order ukup23, then the first nonanalytic term in
*dxapaeaa

r(xa)G$h2Fcc%(k,xa) is equal to a nonanalytic

term of greater order, namely, of orderukup21. The latter
property is nontrivial.

In fact, the dressing devised to prove the external scre
ing sum rule is to be pushed further in order to get the
nounced result. At the same time we get the diagramm
structures of the leading tails of the induced charge dens
These structures turn out to involve onlyhnn—with a proper
dressing—as the leading tails of the internal correlations

In the presence ofB0 , according to the screening prope
ties ~115!, ~155!, and ~156!, and again since any diagram
decays at least as 1/r 5 after integration over the shapesX’s
of the root points@see Eq.~129!#, h(B* ) proves to be respon
sible for an algebraic decay in the induced charge den
that falls off at least as 1/r 7 at large distances. By using th
same properties@except for Eq.~115!# together with Eqs.
~127! and ~128! and the right-~left-! dressing relation for
h (h2n), we obtain thath(C* ) gives a 1/r 5 tail to the in-
duced charge density. The latter tail comes in fact only fr

Fcmr* hnn* @SD** 1rFmc* rFmc#. ~157!

In the absence ofB0 , in Sec. IV E of Ref.@5#, the right-
dressing relations together with the ‘‘screening’’ propert
~115!, ~155!, and the behaviors~130! and ~131! of the
decays of diagrams are unchanged when a fa
*0

pdtexp@ik•Xb(t)# is introduced. By using them repeatedl
we get that the induced charge density decays as 1/r 8. More-
over, the latter tail arises only from

SD* * hnn* SD** ~158!

as already implicitly shown in Sec. IV E of Ref.@5#.
As a conclusion, in the presence of the magnetic fie

there is no cascade of power laws for the leading behav
of the correlations when charges are summed over. In
absence of magnetic field, this cascade is generated by
combination of the remarkable screening property of the
ty
r-

f

n-
-
ic
y.

ty

s

or

,
rs
e

the
-

bye polarization cloud and the invariance under rotatio
Indeed, the latter allows the harmonicity of the Coulom
potential to play a role: it changes leading tails that woulda
priori decay algebraically as 1/r 5, 1/r 7, and 1/r 9 into short-
ranged fall off’s, and it induces the special structure of t
leading and subleading algebraic tails~130! and ~131!.
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APPENDIX A

In this appendix we study the first values taken
P(q,q8) for any elementary algebraic tailS(g)[q,q8] which
are used in Sec. VII B. The discussion is analogous to tha
Appendix B in Ref.@5#. The differences will be pointed ou
as comments. The discussion is carried out in two steps
the first step, we consider the case whereS(g)[q,q8] comes
from a single algebraic bond which is possibly convolut
with fast decaying functions. Then the property~B! defined
in Eqs. ~88! and ~89! is obviously satisfied. In the secon
step, convolutions involving more than one algebraic bo
are considered. We also present results whenS(g)[q,q8] con-
tains noW bond, because this case corresponds to the a

braic tails of aP̃Wc
diagram withL51, which is considered

in Sec. VII B. The details are the following.
If S(g)[q,q8] comes from a single bondW then g511q

1q8, i.e., P(q,q8)51. If S(g)[q,q8] comes from a single
bond FR6 , then,S(g)[q,q8]5)p51

Pw w[mp ,np] , with mp>1 and
np>1 and Pw>2. So g5P1q1q8, with P5Pw , q
5(p51

P mp , andq85(p51
P np and allP(q,q8)’s such that

2<P~q,q8!< inf~q,q8! ~A1!

are realized.
Now, we consider the case in whichS(g)[q,q8] comes from

a single algebraic bond in convolution with two fas

decaying functionsF [q,Q1] and F [Q18 ,q8] where the various
superscripts@Q,Q8# have the same meaning as in the de
nition of property (B). In the following, internal degrees o
freedom that are different from the shapesX are omitted.
The expression ofS(g)[q,q8] in Fourier space reads

S~1!
~g23![q,q8]~k,Z,Z8!

5E D~X1!E D~X18!F1
~n![q,Q1]

~k,Z,X1!

3S~g123![q1 ,q18]~k,X1 ,X18!F2
~n8![Q18 ,q8]

~k,X18 ,Z8!.

~A2!

F [q,Q1] andF [Q18 ,q8] are analytic terms in Fourier space, an
in Eq. ~A2! n (n8) denotes the order of the first term in th

small-k expansion ofF [q,Q1] (F [Q18 ,q8] ) that gives a nonva-
nishing contribution after integration over the shap
X1 (X18) of the intermediate loop. When n
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50, F (0)[q,Q1] (k,Z,X1)5F [q,Q1] (k50,Z,X1) and whenn
51, F (1)[q,Q1] (k,Z,X1)5*dx i (k•x)F [q,Q1] (x,Z,X1). Thus
the order inuku of the nonanalytic term~A2! is g23 with

g5g11n1n8, ~A3!

wheren andn8 take the value 0 or 1 that is determined
invariance under inversion as follows. We use the invaria
of D(X1) under X1→2X1 and the invariance o
F [q,Q1] (k,Z,X1) under global inversion of its arguments,
well as the definitions of the superscriptsq1 and Q1 . If n

50, S(g23)[q,q8] (k,2Z,Z8)5 (21)q1S(g23)[q,q8] (k,Z,Z8) ,
while, if n51,

S~g23![q,q8]~k,2Z,Z8!5~21!q111S~g23![q,q8]~k,Z,Z8!.

On the other hand, the definition of the superscr
q is S(g23)[q,q8] (k,2Z,Z8)5(21)qS(g23)[q,q8] (k,Z,Z8).
Hence, q and q11n have the same parity. Sinceg1

5P1(q1 ,q18)1q11q18 with inf(q1 ,q18)>P1 , we can write
g5P1q1q8 with P5P1(q1 ,q18) and q5q11n>P and
q85q181n8>P, so that properties~A! and ~B! are both sat-
isfied. We notice that ifq51, then (n50, q151) so that
P51. This property will be preserved in the second step
the discussion.

In a second step, we consider the case whereJ>2 alge-
braic bonds are involved in the convolution. After integrati
over the intermediate points of every product made o
nonanalytic term times an analytic one, such a convolut
reads in Fourier space, as in Eq.~B6! of Ref. @5#,

S~J!
~g![q,q8]~k,Z,Z8!

5E F )
j 51

J21

dx jr~x j !GS
~1!

~g123![q,q18]
~k,z,x1!

3S
~1!

~g223![q2 ,q28]
~k,x1 ,x2!•••

3S
~1!

~gJ23![qJ ,q8]
~k,xJ21 ,z8!. ~A4!

After integration over the shapes of the internal pointsx j ,
inversion invariance implies that only even values ofqj8
1qj 11 do contribute. Henceforthg5P(q,q8)1q1q8 with

P~q,q8!5323J1(
j 51

J

Pj1 (
j 51

J21

@Pj1Pj 111u~Pj1Pj 11!#

12N. ~A5!

One must consider two cases, because the results are n
same in the presence or in the absence of magnetic field

Case~1!. If Pj51 for all j 51, . . . ,J ~namely, all nonana-
lytic terms arise from W bonds!, the corresponding
S(g)[q,q8] (k,Z,Z8) comes from a convolution

F1* w[q1 ,q18] * F2* w[q2 ,q28] * F3* •••* FJ* w[qJ ,qJ8] * FJ11 , and
the corresponding nonanalytic term reads
e

t

f

a
n

the

S~J!
~g![q,q8]~k,Z,Z8!

}E )
j 51

J

D~X j !E )
j 51

J

D~X j8!F1~k,Z,X1!

3
~k•X1!q1~k•X18!q18

k2
F2~k,X18 ,X2!

3
~k•X2!q2~k•X28!q28

k2
•••FJ~k,XJ218 ,XJ!

3
~k•XJ!

qJ~k•XJ8!qJ8

k2
FJ11~k,XJ8 ,Z8!. ~A6!

In the absence of magnetic field, the rotational invarian
ensures that, sinceF j is an analytic function ofk, for j
51, . . . ,J21,

E D~X j8!E D~X j 11!~k•X j8!qj8F j 11~k,X j8 ,X j 11!

3~k•X j 11!qj 11

5ukuqj81qj 111u~qj81qj 11!FAj 11
~0! 1 (

n51

`

Aj 11
~2n!uku2nG . ~A7!

Thus Eq.~A6! may still contain a nonanalytic term, namel
a 1/uku2 term, after integration over the loop shapes but o
in the caseqj85qj 1151 for j 51, . . . ,J21. In this casePj

51 for all j ’s and in formula~A5! only the term withN
50, i.e.,P(q,q8)51, corresponds to an algebraic tail whi
the other values ofN correspond to short-ranged decays. F
nally, only the valueP(q,q8)51 is realized whenB050.

In the presence of the magnetic field, the invariance un
rotations is broken in one space direction, and in Eq.~A7!, in

place ofukuqj81qj 111u(qj81qj 11), there appears a sum of term
uku2(Nj 2nj )@k#z

2nj with Nj5qj81qj 111u(qj81qj 11) and nj

50, . . . ,Nj . Thus nonanalytic terms of type~85! remain
after integration over the loop shapes and in Eq.~A5! all
values ofN do correspond to some algebraic tails, name
all valuesP(q,q8)5112N with N>0 are indeed realized.

Case ~2!. There exists at least onePj 0
Þ1. Then, the

nonanalyticity is never canceled by the integration over lo

shapes, becauseS(g j 0
23)[qj 0

,qj 0
8 ] (k,X j 0

,X j 0
8 ) arises from an

FR6 bond. The values taken byP(q,q8) are determined by
inspection, according to the discussion of Appendix B
Ref. @5# just after Eq.~B9!. If q5q851, then P15PJ51
and the values given by Eq.~A5! are P(q,q8)
56,7, . . . . „P(q,q8)56 @P(q,q8)57# is realized when
Pj51 for all j ’s except onej 0 that is different from 1 andJ
and Pj 0

52 @Pj 0
53#.… Contrarily, if q.1 ~or q8.1) then

P1 ~or PJ) may take the value 2 and the values given by E
~A5! areP(q,q8)5412N, so thatP(q,q8)54 is also real-
ized. @P(q,q8)54 is realized whenPj51 for all j ’s except
j 51 if either q.1 or j 5J if q8.1.]

As a conclusion, whenB050
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P~q,q8!55
1,6,7, . . . if q5q851

1,4,6,7, . . . if ~q51, q8>2! or ~q>2, q851!

1,2,4,5, . . . if inf~q,q8!52

1,2, . . . if inf~q,q8!>3.

~A8!

WhenB0Þ0, Eq. ~B10! of Ref. @5# is still valid ~up to a misprint! and reads

P~q,q8!5H 1,3,5,6, . . . if q5q851

1,3,4, . . . if ~q51, q8>2! or ~q>2, q851!

1,2, . . . if inf~q,q8!>2.

~A9!

Finally, in view of the discussion in Sec. VII B, we consider aS(g)[q,q8] without anyW bond. This is the case of a tailT with

L51 arising from a P̃Wc
diagram. When only one algebraic bond is involved then it is anFR6 , and 2<P(q,q8)

< inf(q,q8). In the case of a convolution ofJ>2 algebraic bonds without anyW bond in the convolution,Pj>2 for all j
51, . . . ,J and inf(q,q8)>2. If Pj52 for all j ’s, then, according to Eq.~A5!, P(q,q8)53J2112N takes the values
P(q,q8)5512N for J52, P(q,q8)5812N for J53, . . . . If Pj52 for all j ’s exceptP153, thenP(q,q8)53J1212N
takes the values 512N for J52, . . . . Finally, whenJ varies,P(q,q8)55,7,8, . . . . Moreover, the convolutions of case~1!
do not exist and the results are the same in the presence or in the absence of magnetic field. As a conclusion,

P~q,q8;P̃Wc
,L51!55

2,5,7,8, . . . if inf~q,q8!52

2,3,5,7,8, . . . if inf~q,q8!53

2,3,4,5,7,8, . . . if inf~q,q8!54,5

2,3, . . . if inf~q,q8!>6.

~A10!
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In fact, the important results for the discussion of the d
grams~91! are the minimal odd and even values given
Eqs.~94! and ~96!.

APPENDIX B

In this appendix we give the errata for Appendix B of Re
@5# which deals with the structure of elementary algebr
tails defined in Sec. III D of the latter reference before in
gration over the loop shapes of their end points. We re
that the definition of these tails is not the same as that gi
in Sec. VII A of the present paper. The results apply only
the caseB050.

~1! The expressionAm1 , . . . ,mq

[q] (Z)5@Z#m1
•••@Z#mq

f (uZu)
which was written just after Eq.~3.26! and in the second line
of Eq. ~B2! is not general enough, because the ten

A
$ %

[q181n]
(Z8) may contain both components of@Z#n and ten-

sorsdn i ,n i 11
.

~2! After Eq. ~B2!, the sentence ‘‘The tensorA
$ %

[q181n]
(Z8)

of rank q11n8 is nonzero only ifq11n8 is even’’ must be re-

placed by ‘‘The tensorA
$ %

[q181n]
(Z8) of rank q181n is of par-

ity ( 21)q181n . As a consequence,*D(Z8)A
$ %

[q181n]
(Z8), is

nonzero only ifq181n is even.’’
~3! If B050, the following modification has to be mad

After Eq. ~B9!, when thePj ’s vary the first even value fo
P(1,1) is 6, andP(1,1) does not take the values withP
-

.
c
-
ll
n

r

53 or P55, because the corresponding terms are in f
analytic whenB050; indeed, the 1/k2 singularity is canceled
by the property*dx jr(x j )Am

[1] (X j )An
[1] (X j )}dm,n . ~On the

contrary, if B0Þ0, thenP53,5 are realized.! Subsequently,
in the same paragraph,P(q,q8) may take the values
P(q,q8)51,4,6,7, as soonq8>2 or q>2, and not the values
3 and 5. Eventually, Eq.~B10! must be replaced by Eq.~A8!.
However, the important result remains the same: the fi
even values taken byP(q,q8) are those given in Eq.~96!. If
there is noW bond in the convolution, thenq>2 and q8
>2 and the first allowed value forP(q,q8) is 2, and Eq.
~B11! is to be replaced by Eq.~A10!. However, the impor-
tant result is about the first odd value taken byP(q,q8)
which is given in Eq.~94!. PWc

(q,q8)52,3, . . . ,inf(q,q8)

comes from anFR6 . The values 5,7,8, . . . arerealized by a
convolution.

~4! In the case ofP̃Wc
diagrams, the valueP(q,q8)53

was omitted in Eq.~B11! of Ref. @5#, though it appears as
soon as inf(q,q8)>3, whetherB050 or B0Þ0.

APPENDIX C

In the present appendix we give errata for Appendix C
Ref. @5# which deals with the structure of algebraic tails f

various functions involving diagramsP̃Wc
. Appendix C of

Ref. @5# proves to be valid whenB0Þ0.
If B050, then the correct version of Eq.~B10! of Ref. @5#

that is given in Eq.~A8! of the present paper causes a mo
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fication of Eqs.~C1!, ~C3!, and~C4!, which become, respec
tively,

dT~ I!50,5, . . . , ~C1!

dT~ II !50,3,5,6, . . . , ~C2!

and

dT~ III !50,1,3,4, . . . . ~C3!

According to the modified version of Eq.~B11! of Ref. @5#,
,

en
namely, Eq.~A10! of the present paper, the correct versi
of Eq. ~C5! is

dT~ IV !5H 0,3,5,6, . . . if inf~q,q8!52

0,1,3,5,6, . . . if inf~q,q8!>3.
~C4!

However, the important result for the discussion
Eq.~92! is that given in Eq.~99!. Then, the discussion o
Appendix C is unchanged, apart from the following misprin
Eq. ~C37! must be replaced by Eq.~C40! of Ref. @5#, namely,
by Eq. ~98! of the present paper.
a-
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